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ABSTRACT

The Brownian bridge gives a principled method for interpolating in space and time between two
timestamped points. It expresses the uncertainty of the interpolated location as a time-dependent
Gaussian distribution. This chapter explains the Brownian bridge, shows how to integrate it to get
probabilities over space and time, and demonstrates how to fit a Brownian bridge to spatiotemporal
data. The explanations of integrating and fitting use a running example with numerical values as an
aid to debugging. A larger example demonstrates the fitting of a Brownian bridge model to long
trajectories of bald eagles.
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1 Introduction

Location measurements of people, animals, and objects are necessarily sampled in time, sometimes with long intervals
between them. It is often necessary to reason about the location of something between location samples. For instance,
we may want to know if it came near a certain point as it was moving between two measured locations. One simple way
to do this is with linear interpolation. In two-dimensional space, we will call the two measured points xa and xb, where
xa = (xa, ya)T and xb = (xb, yb)

T . We suppose that point xa was measured at time t = 0 and point xb was measured
at a later time t = T . Then the coordinates of the point according to linear interpolation are

x(t) = xa +
t

T
(xb − xa) for 0 < t < T (1)

This type of interpolation may be adequate when the points are near each other in space and time, but it is based on the
assumptions that the motion was a straight line segment and that the speed was constant. It also assumes that the motion
is deterministic without any accommodation for the inherent uncertainty in location between the two measurements.
The Brownian bridge avoids these assumptions.

Analyzing spatiotemporal data this way means we can reason about where something was between location measure-
ments. For human mobility, we can compute the probability of someone having visited or passed through a certain
region at a specific time even without seeing any measured points in that region. The Brownian bridge has been applied
to human location data [1, 2], but it is not clear that this is an appropriate model. In [1], the authors show that a
Brownian bridge combined with linear extrapolation works better than two simple baseline methods for predicting
human location. The authors of [2] conclude, "After all, the proposed BBMM [Brownian bridge movement model]
adaptation is suitable to determine regularities of people’s movement but it does not provide the expected precision to
recognize single addresses." Humans and animals likely move with more intention than the Brownian bridge implies, yet
the model can be useful for acknowledging and representing uncertainty about what happens between measurements.

Alternatives to this probabilistic representation reason about the maximum speed of an object traversing between two
points, e.g. [3, 4]. In [5], the authors present a thorough discussion of modeling and querying about objects whose
uncertain location is represented by Markov chains through discrete time and space.



2 Brownian Bridge

A Brownian bridge is a conditional probability density function of location, describing location as a function of time
between two known points. The Brownian bridge is based on Brownian motion, or Wiener process, which classically
describes a particle undergoing a random walk. In a standard, two-dimensional Wiener process, for a particle starting at
location (0, 0)T at t = 0, the distribution of location after time t is given by a Gaussian distribution with mean (0, 0)T

and covariance matrix tI , where I is the 2× 2 identity matrix. Intuitively, as time t proceeds, the position of the particle
becomes more uncertain, reflected in the covariance matrix.

A Brownian bridge is a probability distribution of a Wiener process conditioned on a specific endpoint. The probability
distribution is a Gaussian where the mean and covariance are functions of time. Specifically, the distribution for
two-dimensional space is, for 0 < t < T ,

f(x|t) =
1

2π
p
|Σ(t)|

e�
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=
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e
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for 0 < t < T (3)

where

µ(t) = xa +
t

T
(xb − xa) for 0 < t < T (4)

and

Σ(t) =

�
σ2(t) 0

0 σ2(t)

�
for 0 < t < T (5)

and

σ2(t) =
t(T − t)

T
σ2
m for 0 < t < T (6)

Figure 1: This is the Brownian bridge with our running example. This has time integrated out, i.e. Equation 11. It gives
the PDF of where the object may have been over its entire traversal from the peak at the start point to the peak at end
point.
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(a) Mean of Brownian bridge example for xa =
(2, 3)T , xb = (9, 5)T , and T = 10 seconds. The
gray cell is for an example in Section 3.1.

(b) Variance of Brownian bridge example as a func-
tion of time for σ2

m = 2 meters2/second and T =
10 seconds.

Figure 2: Mean and variance of Brownian bridge example

From Equation 3, the distribution of the point at time t is a two-dimensional Gaussian with mean vector µ(t) and
covariance matrix Σ(t). The mean, given by Equation 4, is the same as the linear interpolation in Equation 1, i.e. it
follows a straight line segment from xa and xb with constant speed through time. For an example Brownian bridge
with xa = (2, 3)T and xb = (9, 5)T , the mean is shown in Figure 2a.

The variance σ2(t) from Equation 6 is a parabola in time with σ2(0) = σ2(T ) = 0. Its maximum is T
4 σ

2
m occurring

at t = T
2 . The parameter σ2

m is called the diffusion coefficient [6], and it has units of length2/time. When fitting a
Brownian bridge to data, the diffusion coefficient is the only parameter to fit. A technique for doing this is explained in
Section 4. For an example Brownian bridge with T = 10 seconds and σ2

m = 2 meters2/second, the variance is shown
in Figure 2b.

The Brownian bridge in Equation 3 is written as f(x|t) to show that it is a continuous sequence of probability density
functions (PDFs) as a function of time. At each time, there is a given joint PDF over spatial coordinates x = (x, y)T .
The time t is not part of the joint PDF. Instead, the joint PDF over x varies with time.

3 Brownian Bridge Integration

The probability density function for the Brownian bridge is given in Equation 3. It expresses the uncertainty in location
over time as a person, animal, or object traverses from xa to xb over time [0, T ]. For practical applications, however, it
is useful to compute probabilities, which involve integrating Equation 3 over space and time.

3.1 Integrating Over Space

We can use the Brownian bridge to compute the probability over time of something visiting a certain region while
moving between xa and xb. For instance, we may want to know if a person visited a certain store or may have been
exposed at a certain virus hotspot at a given time instant. We will assume the location of interest is a rectangular region
R with its lower left corner at (x1, y1)T and its upper right corner at (x2, y2)T . Then the probability of being inside
this region as a function of time is
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Figure 3: The solid curve is the probability from Equation 7 of being in a rectangle with its lower left corner at (7, 1)
and its upper right corner at (8, 2) using the Brownian bridge example from Figure 2. The other two curves show how
the probability varies with changes to the Brownian bridge parameters.

P (x ∈ R|t) =

Z Z
R
f(x|t) dx (7)

=

Z y2

y1

Z x2

x1

f(x, y|t) dx dy (8)
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Here f(x|t) comes from Equation 3. The components of the mean are µ(t) =
�
µx(t), µy(t)

�T
. The error function

follows the standard definition

erf(z) =
2√
π

Z z

0

e�t
2

dt

Note that Equation 9 gives an instantaneous probability at time t of the object being inside the given rectangle. It does
not give a probability of visiting the region over some time interval.

We use the example parameters from Figure 2 and a rectangle with (x1, y1)T = (7, 1)T and (x2, y2)T = (8, 2)T , which
is shown in gray in Figure 2a. The solid curve in Figure 3 shows the probability over time of the moving object being
inside the rectangle. The rectangle is closer to the endpoint of the Brownian bridge than the beginning, so the probability
rises near the end. The probability is zero at the two endpoints of the Brownian bridge, since the location at these two
points is assumed to be absolutely certain. The dashed curve in the figure shows what happens if we increase σ2

m from
2 to 5. The curve is flatter, reflecting the increased uncertainty of the object’s location over time. Keeping σ2

m = 2 and
shortening T to 5 seconds gives the dotted curve, which goes to zero at 5 seconds but is still skewed toward the end of
the time period.

3.2 Integrating over Time

The Brownian bridge can also be used to compute a PDF of where the object may have been during the entire time
period 0 < t < T . This is the average of the probability densities over time [7]:

f(x) =
1

T

Z T

0

f(x|t)dt (10)

This is a complicated integral, but it has been solved in closed form by Van Nieuland et al. [8]. The result is

f(x, y) =
1

πσ2
mT

exp
�
− 1

σ2
mT
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�
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σ2
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�
(11)
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where

θ = atan2(yb − ya, xb − xa)�
x0

y0

�
=

�
cos(θ) sin(θ)
−sin(θ) cos(θ)

��
x
y

�
br =

p
(xb − xa)2 + (yb − ya)2

K0 is the modified Bessel function of the second kind of order zero.

For our running example, f(x) is shown in Figure 1. This gives the PDF of where the object may have been over its
entire traversal. Such a PDF can be important for estimating an animal’s home range or, for any object, a probabilistic
view of where it tends to be.

4 Fitting a Brownian Bridge to Data

In a Brownian bridge, the diffusion coefficient, σ2
m, controls the breadth of the distribution. A smaller value indicates a

more direct path between measured points, and a larger value indicates more wandering. With timestamped location
data, it is possible to estimate σ2

m, which enables the computation of Brownian bridges between pairs of points.

4.1 Method for Fitting

The accepted method for finding σ2
m, proposed by Horne et al. [6], is likelihood maximization. It is based on a set of

M triples of timestamped locations {(xi,a, ti,a), (xi,b, ti,b), (xi,c, ti,c)}, i = [1...M ], where the temporal ordering of
each triple is a, c, b, i.e. ti,a < ti,c < ti,b. The endpoints of the Brownian bridge for each triple are xi,a and xi,b, and
Ti = ti,b − ti,a. The likelihood of the midpoint xi,c at ti = ti,c − ti,a is, from Equation 3,

Li =
1

2πσ2(ti)
e
� 1

2�2(ti)
kxi;c�µ(ti)k2

(12)

where

µ(ti) = xi,a +
ti
Ti

(xi,b − xi,a)

σ2(ti) =
ti(Ti − ti)

Ti
σ2
m

The total likelihood is L =
QM
i=1 Li, and we search for the value of σ2

m that maximizes L. To avoid numerical
underflow from small values of Li, we maximize the log likelihood instead. For our experiments below, we used the
Python function scipy.optimize.minimize_scalar(-logL, method=’brent’).

There are different ways to make triples of points, and we show results for the methods shown in Figure 4.

4.2 Simple Example

This very simple example serves as a benchmark for testing code. Recall the running example with xa = (2, 3)T ,
ta = 0, xb = (9, 5)T , and tb = T = 10. Suppose there is a point xc = (6, 1)T , tc = 7, between xa and xb. These
three points make a single triple (xa,xc,xb) to which we can fit σ2

m using maximum likelihood as described above,
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Figure 4: There are different ways to generate triples of points for fitting σ2
m. For each method, the points are ordered

by time going from left to right. The top method was introduced by Horne et al. [6]. The "combinations" method makes
triples from all distinct combinations of three points.

where M = 1. From Equation 12, we have

i = 1

Ti = 10

ti = 7− 0 = 7

µ(ti) = (2, 3)T +
7

10

�
(9, 5)T − (2, 3)T

�
= (6.9, 4.4)T

σ2(ti) =
7(10− 7)

10
σ2
m

= 2.1σ2
m

‖xi,c − µ(ti)‖2 = ‖(6, 1)T − (6.9, 4.4)T ‖2

= ‖(−0.9,−3.4)‖2

= 12.37

L = Li

=
1

4.2πσ2
m

e
� 12:37

4:2�2
m

Figure 5 shows a plot of this likelihood as a function of σ2
m. The maximum likelihood occurs at σ2

m = 2.945.

4.3 Example of Fitting with Lat/Long Data

Brownian bridges are often used to study animal movement, so we present GPS tracking data from 10 bald eagles
from movebank.org as an example [9]. The eagles were tracked mostly on the west coast of Canada for an average
of 493.2 days each with an average of 2633.8 points each, as shown in Figure 6. We computed σ2

m for each eagle
using the maximum likelihood method described above. Note that the exponent in Equation 12 contains the term
‖xi,c − µ(ti)‖. This is the distance between the measured point xi,c and the mean point µ(ti). With lat/long points, we
can compute this distance with the Haversine formula [10], avoiding the need to convert the lat/long points to local
Euclidean coordinates.

The computed diffusion coefficients of the 10 eagles are shown in Figure 7 using the four triple generation methods
illustrated in Figure 4. The first three generation methods produce fairly consistent results for each eagle. For the
combinations method, we used 1000N random triples for each eagle, where N is the total number of available location
points for the eagle. For these triples, the resulting diffusion coefficients are usually much larger, and sometimes much
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