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Abstract—Regular people give away their location data without
much knowledge about what can be inferred from it. This paper
presents a sensitivity analysis of location disclosure, showing what
can be inferred from even just a few place visits. The aim is
to highlight how modern inference algorithms can take small
location disclosures and create detailed inferences about where
else a person is likely to go and what sorts of places they tend
to visit. Based on an analysis of over 100,000 people, we show
how disclosing just one location point can be used to predict
other visits with an AUC of 0.88. We develop another algorithm
that shows the types of places a person has an unusually high
propensity to visit, and we use this result as part of an economic
analysis of delivering targeted advertising. This research serves to
raise awareness about what can be inferred from even very small
location disclosures, which can in turn inform regular people
about their true privacy risks.

Index Terms—personal location, location privacy, inference,
advertising

I. INTRODUCTION

Individuals are largely unaware of how their location data
is used to make inferences about them. A recent survey
showed that less than one third of consumers understand how
retailers use their personal data after it is disclosed [1]. Even
understanding who has copies of the data is difficult to know,
as data brokers buy, sell, and trade personal data [2]. Some
of these brokers specialize in location data, gathering the
whereabouts of over 200 million Americans from apps on their
phones [3]. Intellectual property concerns are a disincentive
for companies to reveal the details of how and what they
can infer from personal data. A legal analysis of Europe’s
GDPR privacy law suggests it does not necessarily guarantee
an individual can successfully demand a detailed explanation
of an inference based on their personal data, much less an
explanation of which inferences may be made and how [4].

The research community can help in this regard by showing
what can be inferred from personal data, including location
data. This paper is intended to demonstrate the types of infer-
ences that are possible from even a small location disclosure
from an individual, such as just a few discrete locations.
In particular, from a small disclosure, we demonstrate a
pipeline of inferences that reveal (1) the individual’s likely
other location visits, (2) their propensity to visit locations
with certain categories of businesses, and (3) the economic
reasoning that a potential advertiser would use to determine
whether or not to deliver an ad to the individual based on the
the inferences in (2). This paper presents a plausible sequence
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Fig. 1. The blue triangles show the discrete visit regions covering the extent
of our experimental location data in the suburbs east of Seattle, WA. Thicker
outlines indicate more popular visits averaged over all our location data.

of inferential steps that a disclosure recipient could employ to
take advantage of the disclosure.

We refer to this investigation as a sensitivity analysis,
because it considers the case of disclosing a small amount
of location data compared to disclosing none. It is essentially
approximating the derivative of inference accuracy vs. the size
of the disclosure when the existing disclosure is small or zero.
This is the situation a user faces when an app first asks for
permission to access their location data. Our analysis shows
what inferences could result from granting this permission
after only a few location disclosures, i.e. the sensitivity of
disclosures at the point of little or no previous disclosures.

We aim to identify and communicate specific inference
implications. Revealing these implications are not mandated



by law [4] nor likely to be divulged voluntarily by enterprises
making the inferences. This paper develops and describes
principled approaches to making these inferences and shows
how well they work on data from about 100,000 people
who made about 2.8 million discrete location visits over
five months. To the best of our knowledge, this question of
inference sensitivity has not been previously addressed in the
research literature, because previous work does not address
small location disclosures of individuals’ everyday lives.

II. RELATED WORK

With a goal of understanding how small location disclosures
can lead to significant inferences, this work is related to mul-
tiple threads of previous research: location privacy, location
prediction, and data completion.

A. Location Privacy

The goal of this paper is to understand and report what can
be inferred about a person with only a small location disclo-
sure. The privacy paradox says that while people say they are
concerned about privacy, including location privacy, they do
not actively protect their personal data and often knowingly
give it away [5]-[7]. For location privacy in particular, a survey
by Zafeiropoulou et al. showed that, out of 150 respondents,
79% professed concern about location privacy, but they survey
did not find a strong correlation between the respondent’s
privacy concerns and their actual behavior [8].

One way to induce privacy-enhancing behavior could be to
reveal what sort of inferences can be made about a person
from their location data. Almuhimedi investigated this in his
PhD thesis [9]. His survey asked 861 respondents whether or
not they would adjust their mobile phone’s privacy settings
in response to privacy “nudges” that highlighted increasingly
alarming consequences of certain apps accessing the phone’s
location data. The results showed that users were more likely
to adjust their privacy settings when they were told about
potential inferences that could be made about them from their
location data. For instance, one statement said, “These apps
have access your location in the past week. With this infor-
mation, apps can infer additional details about you, such as
the address where you live, and use it to predict your income.”
This induced statistically significant more willingness to adjust
privacy settings over the baseline statement of “These apps
have accessed your location in the past week.” This implies
that users may be more willing to address location privacy if
they understand what can be inferred about them from their
location data. The present paper aims to clarify the inferential
possibilities from even a small location disclosure.

B. Location Prediction

The research literature in predicting a person’s location
is long, with some of the earliest work by Marmasse &
Schmandt [10] and Ashbrook & Starner [11] using a Markov
model among other techniques. Song et al. explore the ultimate
limits of human location prediction [12]. We are particularly
interested in understanding prediction sensitivity based on only

a small set of disclosed locations, which narrows the field of
related work.

While this paper looks at this problem from a novel sen-
sitivity point of view, there is related work in predicting the
movements of tourists who naturally have little location history
of the places they visit. Chen et al. focus on using tourists’ four
previous stops to predict the fifth using a variety of methods,
finding that an LSTM worked best [13], with an accuracy of
94.8%. The test data was from the country of Andora, and the
prediction was made among 13 different regions using not only
previous locations but other features such as the nationality of
the tourist, weekday/weekend, and points of interest (POI) in
each region. Using 432 discrete cell locations, Zheng et al.
deployed a variable-order Markov model to predict tourists’
next destinations at Beijing’s Summer Palace, achieving an
accuracy of 69.8% [14]. In tourist prediction, the work most
closely related to ours comes from Muntean et al. [15]. They
study the next location prediction problem using a rich set
of features describing each tourist’s previous visits. Part of
their study examines the accuracy of their ranking model as
a function of how many previous visits are included in the
tourist’s history for prediction, ranging from one to seven.
Interestingly, accuracy seems to flatten after the history length
reaches about three previous visits.

Our work differs from these efforts in tourist prediction in
that we infer all visits, past and future, not just the next, from
between one and five previously disclosed locations. Also,
our output space is relatively large, at 3218 possible location
cells (Figure 1). This significantly exceeds the previous work
of [13](13), [14](432), and [15](888). These differences are
due to the different nature of our problem, where our goal is
to infer all visited locations of a person in their normal life,
which is not limited to popular tourist destinations. We are
especially interested in the accuracy of these inferences based
on only a small amount of location history in an effort to
understand the sensitivity of even small location disclosures
for inference-based privacy attacks.

C. Data Completion

Our goal is to understand the privacy risk of a few location
disclosures, i.e. visits to a few cells in Figure 1. One of
the ways we measure risk is by inferring other visits from
a small amount of disclosures. This is related to the general
problem of data completion. One of the most general forms
of this problem is matrix completion or the more general
tensor completion [16]. In this scheme, the data is normally
represented as a multidimensional array of numbers, either a
matrix or a tensor, with some elements missing. The general
approach is to find a complete, low-ranked array such that
its elements match the known elements of the original array.
These problems are characterized by their “missing ratio,”
which is the fraction of missing data in the array. For our
problem, we look at disclosures with only one to five locations
out of all the cells in Figure 1, leading to a missing ratio
of around 99.8%, normally considered extremely high for
traditional data completion algorithms.



Matrix completion plays a prominent role in some recom-
mender systems [17], such as entries for the Netflix Prize [18].
In a recommender system, the problem is to compute recom-
mendations for new items based on a person’s previous ratings.
Our problem is similar if the items are visits to locations or
POL. It is notable, however, that visiting a certain place does
not necessarily imply a positive recommendation [19]. One of
the algorithms we test, k nearest neighbors, is commonly used
for recommender systems.

Another related research effort is image inpainting or image
completion [20]. Starting from an image with missing or cor-
rupted pixels, the goal is to fill the pixels to make a reasonable-
looking, complete image. Current solutions are dominated by
deep neural net models that can learn from huge collections of
images that have been artificially corrupted in some way. Our
best algorithm for location inference, in Section IV-E, uses a
neural net autoencoder, which is a common architecture for
image inpainting.

III. LOCATION DATA

Our experimental data comes from Safegraph', which is
a company that aggregates location data taken from mobile
phones. This is an especially appropriate source of data for
our work, because it represents the type of location data that
is easily available to advertisers and other enterprises that want
to understand where people go. Each location record consists
of a UTC timestamp, latitude/longitude pair, precision, and a
device identifier for the phone. We took data for five months
staring in December of 2020, limited to the eastern suburbs of
Seattle, WA shown in Figure 1. The total number of points per
person in a typical month (April 2021) had a mean of 94.6, a
median of 2, and a 90th percentile of 169.

The inferences we describe in the remainder of the pa-
per pertain to visits to discrete locations on the map.
We discretized space with the hierarchical triangular mesh
(HTM) [21]. We used HTM level 15 whose triangles have
an area of about 0.06 km? and a side length of about 0.5 km,
shown in Figure 1. We chose this size because it represents
a reasonably accessible area that a person may visit near a
measured location point.

Ultimately we want to infer which other triangles a person
may visit based on recorded visits to a small number of the
triangles. We compute a triangle visit in a simple way. Each
person’s data is divided into 30-minute segments starting at
midnight on the first day of their data. We compute the median
latitude/longitude of the data in each 30-minute segment and
declare a visit to the median point’s enclosing triangle. We
chose 30 minutes to represent a reasonable visit time. This
basic approach to visit detection was necessitated by the wide
variety of trajectory types: some people’s data is sampled very
sparsely, while others show occasional dense trajectories along
apparent driving paths. The simplicity of this technique may
generate false positive visits while a person is in transit, but the
30-minute interval avoids a dense sequence of inferred visits

Thttps://www.safegraph.com/

along a moving trajectory. In addition, these in-transit visits
would be shared with many other visitors which are implicitly
ignored when we look for unusual behavior in our POI analysis
in Section V. Of the 3278 triangles in Figure 1, only 60 were
unvisited. We disregard these 60 for the remainder of the paper
and concentrate only on the N, = 3218 that were visited.

For a person i, all their visits are represented as a set of n;
triangles V; = {v;1,vi2, ..., Vij, ..., Vin, }. As a formal set, V;
contains no repeated elements and no consistent ordering, so
we do not look at the frequency of visits nor their time stamps
for simplicity. For meaningful inferences, we kept only those
persons with n; = |V;| > 5, which reduced the number of
persons from 653,203 to 101,507. Over the five month period,
the total number of visits among the remaining set of persons
was 2,796,346, and the median number of visits per person
was 12.

Our goal in the next section is to estimate the full set V;
from a small subset of V.

IV. SENSITIVITY ANALYSIS OF LOCATION INFERENCE

We know that location is considered by many people to
be a sensitive piece of personal data [21]. In this section we
investigate how well we can infer all the places someone visits
based on only a small subset of their visits. More specifically,
for person 7, we want to predict their set of actual visits V;
from a subset of their visits ‘/i(s), where the size of the subset
is small, ie. [V*)| € {1,2,3,4,5}. Note that s is the size
of the subset, i.e. s = \Vi(s)|. This inference is designed to
understand how much can be learned about where a person
goes from only a small amount of their actual location data.

This section describes and evaluates five methods for this
problem. Each method produces a visit probability for each
triangular region given the visits already observed. This is
P(v;; = l\Vi(S)). The subscript ¢ indicates the particular
person. The subscript j indexes over all the possible visit
locations, so j € {1...N, }, where N, is the number of possible
visit triangles. N, = 3218 in our case. The binary visit
variable v;; has a value of one if person ¢ visited location j,
and zero otherwise. Naturally P(v;; = O|V;(s)) =1—-P(v;; =
V).

Our assumption is that an inference-maker would have
access to past location histories of a substantial number of
people to use for training their inference method. Unless
otherwise noted, each method we described is trained on a
random 90% of the people in our data and tested on the
remaining 10%. We generated a separate set of training and
test instances for each subset size s = |V;(s)| €{1,2,3,4,5}.
Recall that the subset is the set of visited locations that the
inference can see in its attempt to infer all the person’s visits.
For each test person and each subset size s, we generated
one random subset of s visited locations from their actual
visited locations. Thus for each subset size, the number of
test instances was equal to the number of test persons.

We will explain how we generated the training data in
Section IV-E, which is the first method to use training data
in the traditional way.



Each of the methods we explain is a binary classifier for
whether or not the person has or will visit v;; given that the
classifier has seen visits to Vi(s). The classification decisions
¥;; come in the usual way from thresholding the inference
probability P(v;; = 1|V,*)) by a threshold 0 < T < 1, i.c.
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As a conventional classification problem, we evaluate the
results with the area under the curve (AUC) of the receiver
operating characteristic (ROC) curve. AUC is appropriate for
this problem because it considers rates of false positives and
true positives, rather than their absolute numbers, imposing
a balanced view of the two. In our particular problem, the
median number of ground truth visits was 12, giving a ground
truth median positive rate of only J{,% = 0.00373. The ground
truth data is heavily biased toward negatives, because people
do not generally visit many places.

A. Copy Input

This is a simple method that copies the input set of visits
to the inferred set of output visits. It says that the person will
visit only the places she has been observed to visit in the past.
Mathematically

0 if vy, ¢V

P(uy; =1|V) = 2

In terms of performance, all the positive inferences from this
method are true positives, because it only makes a positive
prediction for visits that have actually been observed. This
means its sole operating point on the ROC curve is on the
vertical axis, with false positive rate of zero, as shown in
Figure 2. In order to compute an AUC, we artificially extended
each curve from its sole operating point to the upper right
of the ROC curve. This upper right point could represent an
approach that predicts all the triangles would be visited.

Table I shows the AUC over the test cases as a function
of the size s of the observed subset Vi(s). As expected the
AUC increases with more location disclosure, but the low AUC
values show that this is not an effective method.

B. Shared Prior

This method infers P(v;; = 1|Vi(8)) from a shared prior
over all the persons in the training set. We used the training
data to estimate the prior probability of visiting location v;,
computed as the proportion of test users who visited v;, called
P(v; = 1). Thus this method says simply P(v;; = 1|Vi(s)) =
P(vj = 1). The prior P(v; = 1) is approximately the same as
the visit proportions shown for the whole dataset in Figure 1.

The approach is based on the assumption that every person
shares the same set of visit probabilities. While this is clearly
not true, the method still performs fairly well with an AUC of
0.843. In this case, the inference is completely independent of
the observed visits, so the AUC does not depend on the size
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Fig. 2. These are the ROC curves for the “Copy Input” method. It only gives
true positives, so we artificially extended the curves to the upper right corner
to compute the AUC values in Table 1.

s of the observed subset V;(S). From Table I, it is clear that
the shared prior method significantly outperforms the “Copy
Input” method in terms of AUC.

C. Joint Probability Distribution

From the training data we can estimate a joint probability
distribution over all the N, possible visits, P(v1,va,...,Un,)
giving the approximate probability of any set of visits. This
discrete distribution has /NV,, dimensions, and each dimension is
two units long, representing the either a visit or not. From the
disclosed visits we compute a conditional distribution of visits
P(vy,v9, ...,vN,U|Vi(S)), which gives a new joint distribution.
Technically the conditional distribution does not include the
disclosed locations, so we write it as P({v1,ve,...,vn,} \
V[V to be precise, where {v1,vs,...,vx,}\ V) does
not include the disclosed locations. From the conditional dis-
tribution, we read out the “visit” and “not visit” probabilities
for each v;, normalize the pair so they add to one, and keep the
normalized “visit” probability as P(v;; = 1). The probability
of visiting the disclosed locations in V,*’ is one. From these
visit probabilities, we can compute the ROC and AUC as
above, giving the results in Table I. Here we see that the
joint probability method outperforms the first two methods
(“Copy Input” and “Shared Prior”) for small disclosures of
s = 1 and s = 2, but underperforms “Shared Prior” for
larger disclosures. In fact, its performance drops with larger
values of s. This is counterintuitive, because we would expect
more location disclosure would lead to better inferences. This
underperformance is likely because the conditional PDF is
based on fewer and fewer training samples as s increases.
Creating the conditional PDF is essentially a process of finding
those training examples whose set of visits is a superset
of disclosed visit. As there are more disclosed visits, the
number of qualifying training examples decreases, as shown
in Figure 3. When s = 1 there are a median of 2632 relevant



training samples, but this drops to 4 when s = 5. Essentially,
the joint distribution has too many dimensions to estimate
accurately with our data. We fix this with the next method.

TABLE I

AUC VALUES FOR LOCATION INFERENCE METHODS
Dis-

closure | Copy | Prior | Joint | kNN | MLP
Size

1 0.518 | 0.843 | 0.880 | 0.879 | 0.869

2 0.536 | 0.843 | 0.879 | 0.892 | 0.890

3 0.554 | 0.843 | 0.826 | 0.900 | 0.903

4 0.572 | 0.843 | 0.809 | 0.909 | 0.912

5 0.590 | 0.843 | 0.766 | 0.913 | 0.920

Median Number of Matching Samples for Marginal Joint PDF
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Fig. 3. For a given number of disclosed locations, this is the median number of
samples in the training data that matched for the computation of the marginal
joint PDF.

D. K Nearest Neighbors

The k nearest neighbor (kNN) algorithm finds training
instances that are similar to the set of test visits Vi(s). We
will represent a training vector as v. It is a binary vector with
one element for each of the possible N, visit locations. The
corresponding set of positive visits in the training vector is
V. The distance between the test visits and training visits is
the number of positive visits that they share, i.e. |Vi(s) NnViy.
kNN finds the k nearest training vectors and averages them to
estimate the visit probabilities P(v;; = 1).

We tested different values of k and found k& = 400 worked
well, giving the AUC results in Table I. Except for nearly
matching the performance of the joint PDF for s = 1, kNN
outperformed all the previous methods in this paper. Its AUC
also grows intuitively with s, which matches our expectations
that more location disclosure leads to better inferences about
other visits.

The kNN and joint PDF methods are similar in that they
both select and average some subset of the training vectors.
The joint PDF method selects only those training vectors

that contain a superset of the test set V,;°, which leads to
the paucity of relevant training vectors described above. KNN
instead averages a preset number of nearly matching training
vectors, which in this case leads to better inferences.

E. Multilayer Perceptron

Our final location inference algorithm is a multilayer per-
ceptron (MLP). This is a “vanilla” neural network whose
architecture is shown in Figure 4. The input layer has N,
nodes, one for each visit location. For an input disclosure, all
the input nodes are zero except for the nodes corresponding
to the visits in VZ.(S), which are one. The output layer has the
same number of nodes as the input layer, also corresponding
to the visit locations. In the training phase, these outputs are
binary, representing the actual visits.

The neural net architecture is a simple autoencoder with a
bottleneck of 10 nodes as the middle layer, shown in Figure 4.
A traditional neural network autoencoder maps an input vector
to itself, reducing the dimensionality of the input to a relatively
small number of nodes in the hidden layer(s). In our case,
the input is an “s-hot” binary vector of the N, possible visit
locations in V;(S), with the visited locations represented by
a one and the remaining unknown-visit locations represented
by a zero. In training, the output is a binary vector of the
same size representing all the visited locations of person .
The latent space of the hidden layer is designed to learn a
compact representation of typical visit patterns that is detailed
enough to be accurate but general enough to ignore outliers.
The activation functions exiting the input and hidden layers
is reLU, the activation functions exiting the output layer is a
sigmoid in order to approximate visit probabilities in [0, 1],
and the loss function is mean squared error. The learning rate
was 0.005, with a batch size of 1000, and 100 training epochs.
We experimented with one, two, and three hidden layers and
different numbers of hidden nodes, all with negligible effects
on accuracy.

This technique is the only one of the five that needed
traditional training, so we generated artificial visit subsets
V() from the training data. For each value of s, we selecting
1,000,000 random subsets of size s from the training data to
represent the disclosed set of visits. Each subset was paired
with its corresponding full set of visits for ground truth
training.

We trained a separate MLP model for each value of s. The
loss function was the sum of squared errors between the binary
ground truth and the [0, 1] outputs.

Testing on the same data as the other methods, the AUC
values of the MLP are shown in Table I. For s = 1, MLP
loses to the joint PDF and kNN. It loses slightly to kNN
for s = 2 and proves superior to the other techniques for
5 > 3. MLP’s performance improves monotonically with more
disclosed locations (increasing s), as we would expect. The
ROC curves for MLP are shown in Figure 5.
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Fig. 4. This is the autoencoder architecture of our neural network. The
drawing shows only 30 inputs and outputs, but there were actually N,, = 3218
of each, one for each possible visit location shown as the triangles on the maps
and in Figure 1.
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Fig. 5. For inferring visit locations, these are the ROC curves for the “MLP”
(neural net) method, whose AUC values are given in Table I. The method
performs better as the number of disclosed locations increases.

FE. Summary of Location Inference

This section showed how a small location disclosure can be
used to infer other places a person will likely visit. The MLP
method generally worked best, achieving an AUC of 0.920
for five location disclosures. This compares to an AUC of
0.843 for the prior method, which represents inferences made
without seeing any location disclosures.

Our goal is to both understand the sensitivity of location
disclosures and communicate this sensitivity to normal people
to help them understand the implications of a disclosure. While
machine learning experts understand the AUC and F-score,
they are not necessarily the best metrics to report generally,
because they hide the details of the classification threshold
and true/false positives. In an effort to simplify the results,
we choose the operating point on the ROC curve that is
nearest to the ideal operating point of (false positive rate
(FPR), true positive rate (FPR)) = (0,1), i.e. the upper left
corner. This is one of several different methods for choosing
an operating point [22]. For the prior method, this gives

(FPR,TPR) = (0.247,0.769), and it may be reasonable to report
that the “accuracy” of the method is the TPR as a simplified,
understandable metric, as long as the FPR is not unreasonably
high. Using this approach, Table II gives the FPR and TPR for
the prior method and the MLP method for different disclosure
sizes |s|. We see the “accuracy” (TPR) rises with the disclosure
size, as expected. With a disclosure size of five, the TPR is
8.2 percentage points above the TPR of the prior.

While reporting TPR may be effective for conveying dis-
closure risk, the implications of location inferences may not
be clear to a regular person. In the next section we explore
an implication of these types of inferences that may be more
relatable.

TABLE 11
PERFORMANCE OF MLP METHOD FOR LOCATION INFERENCE
Dis-
closure False True TPR Improvement
Size Positive Rate | Positive Rate over Prior
0 (prior) 0.246 0.769 0.000
1 0.207 0.794 0.025
2 0.190 0.815 0.046
3 0.176 0.827 0.058
4 0.170 0.839 0.070
5 0.163 0.851 0.082

V. SENSITIVITY ANALYSIS OF POI PROPENSITY

The previous section showed how disclosing a small amount
of location data can be used to infer other likely visit locations.
This may be be enough to make some people take location
disclosure more seriously, but there is more possible. In this
section we show that small location disclosures can be used
to infer the propensity of someone to visit near certain types
of points of interest (POI), which may be more sensitive. For
instance, it may be unnerving for someone to inadvertently
reveal their high propensity to visit locations near health
clinics, marijuana shops, or gambling establishments.

Toward this end, we have a list of POI and their business
types covering our study area from the same supplier as our
mobility data. Each POI has one of N, = 183 different
categories. Some of the categories are shown in Figure 6.
For person i, the propensity to visit near a POI type k is
P(b;; = 1), which is between zero and one. Recall that the
binary variable v;; indicates the ground truth of whether or
not person ¢ visited cell 5. We also know the categories of all
the POI inside each cell. This is represented by the indicator
function 1;, which is one if cell j contains at least one POI
of type k and zero otherwise. In our case, k € {1,2,3,..Np}.
Thus the ground truth propensity of person ¢ visiting near a
POI type k is then
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In words, the visit propensity for a POI type k (e.g. restaurant)

is the number of visits to a cell that contain at least one

instance of the POI type normalized by the total number of



distinct cells visited. Because we do not track multiple visits to
the same cell, this propensity ignores repeat visits to the same
POI, including POI that might be near the person’s home.
Instead, it reflects visits to different locations that contain the
same POI type. This is appropriate for an advertiser who wants
to find ad recipients who are likely willing to try a new POI
of a type they visit frequently, because the person already
visits near the POI type in different places. Also, a visit to a
geographic cell is not necessarily proof of a visit to POI in
that cell. However, we make the assumption that a cell visit is
indicative of a POI visit, as a way to compensate for the spo-
radic sampling rate of our location measurements, their spatial
uncertainty, and the fact that people often walk to different POI
between location measurements. We acknowledge that these
propensities are also sensitive to the density of various POI
types, with higher densities leading to higher propensities. This
is why we look for people with significant deviations from the
mean propensities, which are more likely induced by behavior
rather than POI density.

Using Equation 3, we can compute the ground truth POI
category Vvisit propensity pg;’i) for all our test users. The top
three are “Restaurants and Other Eating Places”, “Personal
Care Services”, and “Offices of Other Health Practioners”.

Ultimately we would like to make relatable inferences about
people to help them understand their privacy risk, such as “You
tend to visit near more health clinics than most people.” Thus
we look for a person’s POI propensities that are unusually
high. For each POI type k, we use our training data to compute
the mean visit propensity py and the standard deviation of the
visit propensity o;. We declare an unusually high propensity
if a person’s normalized visit propensity exceeds a threshold
T €10,1], i.e. if

Pik — Pk - T (4)
Ok
where p;;, is the estimated POI propensity. This inequality is
true if an individual’s POI category propensity p;r exceeds
the POI category’s mean propensity pi by a fraction of T
of the category’s propensity standard deviation oy. If this
inequality holds for some 7', then we declare that the person
has an unusual affinity for places with POI type k. For our
experiments, we set 7' = 0.5.
We next describe two different methods for inferring un-
usually high POI propensities.

A. Propensity from Inferred Visits

From the analysis in Section IV, we have various methods
to infer the probability of a visit to a location on the map, i.e.
P(v;; = 1|Vi(s)) for person 4 visiting location cell j given s
previously recorded visits VZ-(S). Adapting Equation 3, we can
compute an estimated POI propensity in expectation as

N, s
SN P = 1V
N, s
SN P(vi; =1V

PO @by =1) =pjy) = 5)

Here we have just replaced v;; in Equation 3 with P(v;; =
1\Vi(s)), the visit probability we estimated in Section IV. The
superscript ! indicates it was estimated from location visit
estimates. The approach in this subsection is to first estimate
the visited locations as in Section IV and then use these
inferred visits to estimate the POI propensity. We use the visit
probabilities from the MLP method described in Section IV-E.

Recall that the ground truth POI propensity is pz(.g) from
Equation 3, and the POI propensity estimated from the inferred
visits is pEQ from Equation 5. For evaluation, we could simply
compare these two quantities over all persons ¢ and POI types
k. Alternatively, we could threshold both according to Equa-
tion 4 and compare the resulting booleans. Instead, we evaluate
the method by first thresholding the ground truth propensities
pgi) according to Equation 4, with the resulting booleans
serving as a ground truth binary classification giving which
POI categories receive an unusally high number of nearby
visits from person ¢. Then we use the inferred propensities
pEQ as classification probabilities, which means we can apply
AUC again for evaluation.

The resulting AUC values are shown in Table III for varying
sizes of location disclosures. The AUC varies from 0.740 for
a disclosure of one location to 0.809 for a disclosure of five
locations. Even small disclosures are revealing.

B. Propensity from Disclosed Visits

The previous subsection started with a location disclosure
and used a probabilistic inference of visited cells to estimate
POI category propensities. In this subsection, we skip the
inference of visited cells, instead going directly from disclosed
locations to high propensity POI categories. This is done with
another neural net configured as an autoencoder, illustrated
in Figure 6. The only difference between this network and
the one in Section IV-E is that this one’s output layer has a
node for each POI category rather than for each location cell.
Otherwise the learning parameters, activation functions and
loss function are identical. The output vectors in the training
phase are binary vectors indicating the state of the inequality
in Equation 4, essentially giving which POI categories have
an unusually high visit propensity. The input vectors are the
same as in Section IV-E, and the training and testing data are
split in the same way. The output of this network is a vector
of propensity probabilities P4 (by, = 1) = pgﬁ), where the
d superscript indicates they were computed directly from the
location disclosures.

The results of this more direct approach are shown in
Table III. The AUC of the direct inference is consistently
higher than the previous method which used an intermediate
estimate of visited cells. The AUC varies from 0.828 for one
location disclosure to 0.884 for five location disclosures, rising
monotonically with more disclosures as we would expect.
Choosing the point on the ROC curve nearest (0,1) gives the
false positive and true positive rates in the last two columns of
Table III. Disclosing a single location gives a true positive rate
(TPR) of 0.773 (FPR = 0.295), and disclosing five locations
gives a TPR of 0.790 (FPR = 0.205). Thus disclosing even a



small number of locations can still lead to accurate inferences
of a person’s high-propensity POI categories.

Unlike the previous Section IV on location inference, this
section does not compare the inferential accuracy to a prior.
This is because the goal in this section is to find POI categories
for which a user has an unusual propensity to be near. A prior
would simply say that each user’s propensities are exactly
ordinary and none are unusual.

input layer output layer

hidden layer

10 nodes

disclosed subset of visits ¢ all POl types

N, nodes (N, = 3218) N, nodes (N, = 183)

Fig. 6. This is the autoencoder architecture of our neural network for inferring
unusually high POI category visits directly from disclosed locations. The
drawing shows only 30 inputs and outputs, but there were actually N,, = 3218
binary inputs, one for each possible visit location shown as the triangles on
the maps and in Figure 1. There were N, = 183 binary outputs, one for each
POI type.
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Fig. 7. For inferring high propensity POI categories, these are the ROC curves
for the “MLP” (neural net) method, whose AUC values are given in Table III.
The method performs better as the number of disclosed locations increases.

VI. LOCATION BASED ADVERTISING

One consequence of disclosing location is advertising. A
2014 study of personal data brokers found that advertising
is the primary use of personal data [2]. Mobile ads can be
effective: one study saw ad recipients respond with a purchase
between 2.1% and 4.3% of the time [23]. This section presents
a simplified model of how an advertiser could use inferences
about POI category preferences from the previous section to

TABLE 111
AUC VALUES FOR POI CATEGORY VISITS
Dis- Tnferred Disclosure Disclosure Disclosure
1 L t' 1 u 1! U 1! Sul
o | ol atc. | —POIAUC | —POIFPR | —POI TPR
1 0.740 0.828 0.295 0.773
2 0.752 0.849 0.259 0.771
3 0.630 0.863 0.242 0.780
4 0.653 0.876 0.221 0.784
5 0.809 0.884 0.205 0.790
TABLE IV

PAYOFF MATRIX FOR AD DELIVERY

POI Category Propensity
no propensity | high propensity
b11 =0 bi2=-1.0+ «
bo1 = —« boo = 1.0 — «

do not deliver

Ad deliver

decide whether or not to deliver an ad. The decision flows
naturally from the POI propensity ROC curves (Figure 7) and
a payoff matrix that gives the economic return of delivering
or not delivering an ad, highlighting how a location disclosure
can help an advertiser.

The assumed payoff matrix is shown in Table IV. The
advertiser uses this to express the amount of gain or loss
depending on the choice of delivering or not delivering an
advertisement to someone who might show a high propensity
for visiting a certain category of POI. For instance, a restaurant
chain might use to this for delivering ads to people who
show an unusually high propensity for visiting locations with
restaurants, as described in Section V. This is similar to the
payoff matrix from Aly et al. [24].

The first row of the payoff matrix gives the consequences
for not delivering an ad. In the first column of the first row,
the payoff for not delivering an ad to someone with no POI
propensity is b11 in general. This is the correct action to take
in this case, and the payoff is b;; = 0, because there is
no ad cost and no benefit. The lower left element gives the
cost of delivering an ad to someone with no POI propensity.
This is simply the cost cost of the ad, o, in some monetary
units. For instance, this would cover the case of delivering
a restaurant ad to someone who does not show any unusual
propensity to visit locations with restaurants. The lower right
element of the payoff matrix is bae, and it gives the benefit of
delivering an ad to someone with a high POI propensity. This
is the right action from the advertiser’s standpoint. Because
we lack the specifics of the POI type, responses rates, and
profit margins, we say the expected benefit of a proper ad
is 1.0, which is primarily the expected profit from a well-
targeted ad. We subtract the cost of the ad, making the payoff
bas = 1 — «. Because we assume an expected profit of 1.0, all
the other payoff values are implicitly expressed as proportions
of this payoff for our model. The upper right element, b;o,
gives the cost of not delivering an ad to a high propensity
individual. This is an opportunity cost, because the person
should have received the ad, but did not. We approximate the



cost of this lost opportunity as the negative of the benefit of
properly delivering an ad. Thus b1o = —boy = —1.0 + a.
The « of this term can be considered the savings associated
with not buying an ad. The goal of this analysis will be to
see how much an advertiser can afford to pay for an ad and
still maintain a positive return, given the quality of inferences
possible from Section V on POI propensity.

The expected return on advertising is a function of the
quality of the POI propensity inferences and the payoff matrix.
Each cell of the payoff matrix corresponds to one measure
of inference quality. For instance, the lower right element,
properly delivering an ad to a high propensity person, corre-
sponds to the true positive rate of the POI propensity classifier
described in Section V. Using the true positive rate (TPR),
false positive rate (FPR), true negative rate (TNR), and false
negative rate (FNR), the expected payoff of an advertising
campaign, per individual, is

E[P] = by1 - TNR + by - ENR + byy - FPR + by, - TPR  (6)

We know that TNR = 1 — FPR and FNR = 1 — TPR. Using
these substitutions along with the modeled values of the payoff
matrix from Table IV, we have

E[P)]=(1-2-TPR—FPR)a+2-TPR—1  (7)

The advertiser wants a positive return, i.e. E[P] > 0, which
implies

1—-2-TPR

< 1—-2-TPR —FPR
This gives an upper bound that an advertiser would be willing
to pay for an ad while still maintaining an overall positive
return on the advertising campaign. If this value is fairly high,
then the advertising campaign would be more attractive, result-
ing in a higher chance of the individual’s location disclosure
triggering an ad.

Figure 7 gives the FPR and TPR values for inferring POI
propensity from the neural net model. These values represent
the classifier quality that the advertiser is constrained to work
with, although the advertiser may choose any (FPR,TPR) pair
along the curves for flexibility. Inserting these values into
Equation 8, we see the maximum tolerable values for « in
Figure 8.

Figure 8 shows several interesting characteristics. Recall
that the horizontal axis gives the operating point of the POI
propensity classifier in terms of TPR. From Table III, the TPR
of the ROC nearest (0,1) is about 0.780 for all five disclosure
sizes. From the plot in Figure 8, this translated to about
0.65 < o < 0.75, which represents the maximum tolerable
cost of an ad. The benefit of properly delivering an ad was set
at 1.0, not counting the cost of the ad. The plot is indicating
that an ad can tolerably cost up to 65% to 75% of the benefit
of a useful ad for our particular choice of parameters. The
plot also shows that at a TPR of less than 0.5, the tolerable
ad cost is negative, meaning the ad campaign would likely be
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Fig. 8. For each location disclosure size s, this gives the maximum relative
amount « that an advertiser could tolerate to pay for an ad. The best true
positive rate (TPR) for the POI propensity inferences is about 0.780 (Table III),
meaning that the tolerable cost is around 0.65 < «a < 0.75 for all five
disclosure sizes.

unprofitable. Finally, as expected, the tolerable cost of an ad
rises with the size of the location disclosure s, because the
POI propensity classifier becomes more accurate.

This model shows how to quantify the costs and benefits of
delivering ads based on location disclosures, making it easier
to anticipate the consequences of an individual revealing even
a few location visits. With specific profit estimates and ad
success rates for different POI types, the model can show
whether or not a location disclosure might trigger an ad.

VII. SUMMARY AND CONCLUSION

This work addresses a new problem: analyzing the sensitiv-
ity of disclosing a few personal locations from the individual’s
point of view. This is an important component of understand-
ing the privacy implications of sharing location data with an
enterprise whose inferential “black boxes” are proprietary. We
showed how a small number of location disclosures can be
used to infer other likely visit locations, and we quantified
the accuracy boost over a prior distribution. Personal location
data reveals a person’s propensity to visit places with certain
types of businesses, and our analysis showed how to discover
those types for which the user seems to have an unusually high
propensity. One of the major uses of personal location data is
advertising, so we concluded with an economic analysis of ad
delivery based on inferred propensities for certain business
types. For all our analyses, we tested and quantified the
inferential accuracy using personal location data from a typical
data broker.

This work is a first step toward understanding and com-
municating the consequences of disclosing personal location
data for regular people, which is helpful for making informed
decisions about location privacy. Future work should explore
more sophisticated inferences as well as the effects of privacy
techniques like obscuring location data with random noise.
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