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ABSTRACT
Mobile apps that use location data are pervasive, spanning domains

such as transportation, urban planning and healthcare. Important

use cases for location data rely on statistical queries, e.g., iden-

tifying hotspots where users work and travel. Such queries can

be answered efficiently by building histograms. However, precise

histograms can expose sensitive details about individual users. Dif-

ferential privacy (DP) is a mature and widely-adopted protection

model, but most approaches for DP-compliant histograms work

in a data-independent fashion, leading to poor accuracy. The few

proposed data-dependent techniques attempt to adjust histogram

partitions based on dataset characteristics, but they do not per-

form well due to the addition of noise required to achieve DP. We

identify density homogeneity as a main factor driving the accuracy

of DP-compliant histograms, and we build a data structure that

splits the space such that data density is homogeneous within each

resulting partition. We show through extensive experiments on

large-scale real-world data that the proposed approach achieves

superior accuracy compared to existing approaches.
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1 INTRODUCTION
Statistical analysis of location data, typically collected by mobile

apps, helps researchers and practitioners understand patternswithin

the data, which in turn can be used in various domains such as

transportation, urban planning and public health. At the same time,
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significant privacy concerns arise when locations are directly ac-

cessed. Sensitive details about individuals, such as political or re-

ligious affiliations, alternative lifestyle habits, etc., can be derived

from users’ whereabouts. Therefore, it is essential to account for

user privacy and protect location data.

Differential privacy (DP) [9] is awell-established protectionmodel

for statistical data processing. DP allows answering aggregate

queries (e.g., count, sum) while hiding the presence of any spe-

cific individual within the data. In other words, the query results

do not permit an adversary to infer with significant probability

whether a certain individual’s record is present in the dataset or

not. DP achieves protection by injecting random noise in the query

results according to well-established rules. It is a powerful semantic

model adopted by both government entities (e.g., Census Bureau)

as well as major industry players.

In the location domain, existing DP-based approaches build a

spatial index structure, and perturb index node counts using ran-

dom noise. Subsequently, queries are answered based on the noisy

node counts. Building DP-compliant index structures has several

benefits: first, querying indexes is a natural approach for most ex-

isting spatial processing techniques; second, using an index helps

quantify and limit the amount of disclosure, which becomes in-

feasible if one allows arbitrary queries on top of the exact data;

third, query efficiency is improved. Due to large amounts of back-

ground knowledge data available to adversaries (e.g., public maps,

satellite imagery), information leakage may occur both from query

answers, as well as from the properties of the indexing structure

itself. To deal with the structure leakage, initial approaches used

data-independent index structures, such as quad-trees, binary space

partitioning trees, or uniform grids (UG). No structural leakage

occurred, and the protection techniques focused on improving the

signal-to-noise ratio in query answers. However, such techniques

perform poorly when the data distribution is skewed.

More recently, data-dependent approaches emerged, such as

adaptive grids (AG), or kd-tree based approaches [15, 20]. AG over-

comes the rigidity of UG by providing a two-level grid, where the

first level has fixed granularity, and the second uses a granular-

ity derived from the coarse results obtained from the first level.

While it achieves improvement, it is still a rather blunt tool to ac-

count for high variability in dataset density, which is quite typical

of real-life datasets. Other more sophisticated approaches tried to

build kd-trees or R-trees in a DP-compliant way, but to do so they

used DP mechanisms such as the exponential mechanism (EM) (dis-

cussed in Section 2) which are difficult to tune and may introduce

significant errors in the data. In fact, the work in [20] shows that

data-dependent structures based on EM fail to outperform AG.
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Figure 1: System model for private location histograms.
Our proposed Homogeneous Tree Framework (HTF) is address-

ing the problem of DP-compliant location protection using a data-

dependent approach that focuses on building index structures with

homogeneous intra-node density. Our key observation is that den-

sity homogeneity is the main factor influencing the signal-to-noise

ratio for DP-compliant spatial queries (we discuss this aspect in

detail in Section 3). Rather than using complex mechanisms like

EM which have high sensitivity, we derive theoretical results that

can directly link index structure construction with intra-node data

density based on the lower-sensitivity Laplace mechanism (intro-

duced in Section 2). This novel approach allows us to build effective

index structures capable of delivering low query error without ex-

cessive consumption of privacy budget. HTF is custom-tailored for

capturing areas of homogeneous density in the dataset, which leads

to significant accuracy gains. Our specific contributions are:

• We identify data homogeneity as the main factor influencing

query accuracy in DP-compliant spatial data structures;

• We propose a custom technique for homogeneity-driven

DP-compliant space partitioning based on the Laplace mech-

anism, and we perform an in-depth analysis of its sensitivity;

• Wederive effective DP budget allocation strategies to balance

the noise added during the building of the structure with

that used for releasing query answers;

• We propose a set of heuristics to automatically tune data

structure parameters based on data properties, with the ob-

jective of minimizing overall error in query answering;

• We perform an extensive empirical evaluation showing that

HTF outperforms existing state-of-the-art on real and syn-

thetic datasets under a broad range of privacy requirements.

The rest of the paper is organized as follows: Section 2 presents

background information and introduces the problem definition. Sec-

tion 3 provides the overview of the proposed framework, followed

by technical details in Section 4. We evaluate our approach empir-

ically against the state-of-the-art in Section 5. We survey related

work in Section 6 and conclude in Section 7.

2 BACKGROUND AND DEFINITIONS
Private publication of location histograms follows the two-party

system model shown in Fig. 1. The data owner/curator first builds

an exact histogram with the distribution of locations on the map.

Non-trusted users/analysts are interested in learning the population

distribution over different areas, and perform statistical queries.

The goal of the curator is to publish the location histogram without

the privacy of any individual being compromised. To this end, the

exact histogram undergoes a sanitizing process according to DP to

generate a private histogram. In our proposed method, a tree-based

Table 1: Summary of notations.

Symbol Description

𝜖tot Total privacy budget

𝜖
height

, 𝜖
data

Height estimation, data perturbation budget

𝜖prt, 𝜖
′
prt

, 𝜖 ′′
prt

Partitioning budget: total, per level, per round

𝑜𝑘 Objective function output for index k

𝑐𝑖 𝑗 Number of data points in row 𝑖 and column 𝑗

ℎ Tree height

algorithm is applied for protection, and the tree’s nodes, repre-

senting a private histogram of the map, are released to the public.

Analysts/researchers ask unlimited count queries that are answered
from the private histogram. Furthermore, they may download the

whole private histogram, and the protection method remains strong

enough to protect the identity of individuals in the database.

2.1 Differential Privacy
Consider two databases D and D ′ that differ in a single record

𝑡 , i.e., D ′ = D⋃{𝑡} or D ′ = D\{𝑡}. 𝐷 and 𝐷 ′ are commonly

referred to as neighboring or sibling.

Definition 1 (𝜖-Differential Privacy[8]). A randomizedmechanism

A provides 𝜖-DP if for any pair of neighbor datasets 𝐷 and 𝐷 ′, and
any 𝑆 ∈ 𝑅𝑎𝑛𝑔𝑒 (A),

𝑃𝑟 (A(D) = 𝑆)
𝑃𝑟 (A(D ′) = 𝑆) ≤ 𝑒𝜖 (1)

Parameter 𝜖 is referred to as privacy budget. 𝜖-DP requires that

the output 𝑆 obtained by executing mechanism A does not signifi-

cantly change by adding or removing one record in the database.

Thus, an adversary is not able to infer with significant probability

whether an individual’s record was included or not in the database.

An important property of DP is composability [10]: running in suc-

cession multiple mechanisms that satisfy DP with privacy budgets

𝜖1, 𝜖2, ..., 𝜖𝑛 , results in 𝜖-differential privacy where 𝜖 =
∑𝑛
𝑖=1 𝜖𝑖 .

There are two common methods to achieve differential privacy:

the Laplace mechanism and the exponential mechanism (EM). Both
approaches are closely related to the concept of sensitivity, which
captures the maximal difference achieved in the output by adding

or removing a single record from the database.

Definition 2 (𝐿1-Sensitivity[9]). Given sibling datasetsD,D ′ the
𝐿1-sensitivity of a set 𝑓 = {𝑓1, . . . , 𝑓𝑚} of real-valued functions is:

Δ𝑓 = 𝑚𝑎𝑥
∀D,D′

𝑚∑
𝑖=1

|𝑓𝑖 (D) − 𝑓𝑖 (D ′) |

2.1.1 LaplaceMechanism. The Laplacemechanism is a widely used

technique to achieve 𝜖-DP. It adds to the output of a query function

𝑓 noise drawn from Laplace distribution Lap(𝑏) with scale 𝑏, where

𝑏 depends on two factors: sensitivity and privacy budget.

Lap(𝑥 |𝑏) = 1

2𝑏
𝑒 |𝑥 |/𝑏 where 𝑏 =

Δ𝑓

𝜖
(2)

To simplify notation, we denote Laplace noise by Lap(Δ𝑓
𝜖
), as it

only depends on the sensitivity and budget.
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2.1.2 Exponential Mechanism. The exponential mechanism (EM)

is another approach to achieve 𝜖-DP when the output of a com-

putation is not numerical. With EM, the output is drawn from a

probability distribution chosen based on a utility function. Con-

sider the generalized problem where for an input 𝑑 , output 𝑠 is

chosen from the space denoted by 𝑆 , i.e. 𝑠 ∈ 𝑆 . The utility function

𝑢 takes as input two parameters 𝑑 and 𝑠 , and returns a real value 𝑟

measuring the quality of 𝑠 as a solution for the input 𝑥 . EM aims

to determine in a differentially private way 𝑚𝑎𝑥𝑠∈𝑆 {𝑢 (𝑥, 𝑠)}. In
general a single record may have a significant impact on the utility,

hence the required noise may grow large, leading to poor accuracy.

2.2 Problem Formulation
Consider a two-dimensional location dataset 𝐷 discretized to an

arbitrarily-fine 𝑁 × 𝑀 grid. Each point is represented by its cor-

responding rectangular cell in the grid. We study the problem of

releasing DP-compliant histograms to answer count queries as accu-
rately as possible. Cell counts are modeled via an 𝑁 ×𝑀 frequency
matrix, in which the entry in the 𝑖𝑡ℎ row and 𝑗𝑡ℎ column represents

the number of records located inside cell (𝑖, 𝑗) of the grid.
A DP histogram is generated based on a non-overlapping parti-

tioning of the frequency matrix by applying methods to preserve

𝜖-DP. The DP histogram consists of the boundary of partitions and
their noisy counts, where each partition consists of a group of cells.

Let us denote the total count of a partition with 𝑞 cells by 𝑐 and

its noisy count by 𝑐 . There are two sources of error in answering a

query. The first is referred to as noise error, which is due to Laplace

noise added to the partition count. The second source of noise is

referred to as uniformity error and arises when a query has partial

overlap with a partition. An assumption of uniformity is made

within the partition, and the answer per cell is calculated as 𝑐/𝑞.
For example, consider the 3×3 grid shown in Fig. 2a, where each

count represents the number of data points in the corresponding

cell. The cells are grouped in four partitions 𝐶1, 𝐶2, 𝐶3, and 𝐶4,

each entailing 0, 12, 4 and 2 data points, respectively. Independent

noise with the same magnitude is added to each partition’s count

denoted by 𝑛1, 𝑛2, 𝑛3, and 𝑛4, and released to the public as a DP

histogram. The result of the query shown by the dashed rectangle

can be calculated as (12 + 𝑛2)/4 + (2 + 𝑛4)/2.

Problem 1. Generate a DP histogram of dataset 𝐷 , such that the
expected value of relative error (MRE) is minimized, where for a query
𝑞 with the true count 𝑐 and noisy count 𝑐 RE is calculated as

𝑀𝑅𝐸 (𝑞) = |𝑐 − 𝑐 |
𝑐
× 100 (3)

In the past, several approaches have been developed for Prob-

lem 1. Still, current solutions have poor accuracy, which limits their

practicality. Some methods tend to perform better when applied to

specific datasets (e.g., uniform) and quite poorly when applied to

others. Limitations of existing work have been thoroughly evalu-

ated in [13], and we review them in Section 6.

3 HOMOGENEOUS-TREE FRAMEWORK
Our proposed approach relies on two key observations to reduce the

noise error and uniformity error. To address noise error, one needs
to carefully calibrate the sensitivity of each operation performed,

(a) (b)

Figure 2: Example of HTF partitioning. The dashed rectan-
gles show the query.

in order to reduce the magnitude of required noise. We achieve

this objective by carefully controlling the depth of the indexing

structure. To control the impact of uniformity error, we guide our
structure-construction algorithm such that each resulting partition

(i.e., internal node or leaf node) has a homogeneous data distribution

within its boundaries.

Homogeneity ensures that uniformity error is minimized, since

a query that does not perfectly align with the boundaries of an

internal/leaf node is answered by scaling the count within that

node in proportion with the overlap between the query and the

node. None of the existing works on DP-compliant data structures

has directly addressed homogeneity. Furthermore, conventional

spatial indexing structures (designed for non-private data access)

are typically designed to optimize criteria other than homogeneity

(e.g., reduce node area or perimeter, control the data count bal-

ance across nodes). As a result, existing approaches that use such

structures underperform when DP-compliant noise is present.

We propose a Homogeneous-Tree Framework (HTF) which builds

a customized spatial index structure specifically designed for DP-

compliant releases. We address directly aspects such as selection

of structure height, a homogeneity-driven node split strategy, and

careful tuning of privacy budget for each structure level. Our pro-

posed data structure shares similarities with kd-trees, due to the

specific requirements of DP: namely, (1) nodes should not overlap,

since that would result in increased sensitivity, and (2) the leaf set

should cover the entire data domain, such that an adversary cannot

exclude specific areas by inspecting node boundaries. However, as

shown in previous work, using kd-trees directly for DP releases

leads to poor accuracy [7, 13].

Similar to kd-trees, HTF divides a node into two sub-regions

across a split dimension, which is alternated through successive

levels of the tree. The root node covers the whole dataspace. Fig-

ure 2b provides an example of a non-private simplified version of

the proposed HTF construction applied on a 3 × 3 grid (frequency

matrix). HTF consists of three steps:

(A) Space partitioning aims to find an enhanced partitioning of

the map such that the accuracy of the private histogram is maxi-

mized. HTF performs heuristic partitioning based on a homogeneity
metric we define. At every split, we choose the coordinate that

results in the highest value of the homogeneity metric. For example,

in the running example (Fig. 2b) node 𝐵1 is split into 𝐶1 and 𝐶2,
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which are homogeneous partitions. However, the metric evaluation

is not straightforward in the private case, as metric computation

for each candidate split point consumes privacy budget. We use

the Laplace mechanism to determine an advantageous split point

without consuming large amounts of budget. As part of HTF, a

search mechanism is used to select plausible candidates for evalua-

tion and find a near-optimal split position. The total privacy budget

allocated for the private partitioning is denoted by 𝜖prt.

(B) Data sanitization starts by traversing the tree generated in

the partitioning step. At each node, a certain amount of budget

is used to perturb the node count using the Laplace mechanism.

Based on the sanitized count, HTF evaluates the stop condition
(i.e., whether to follow the downstream path from that node or

release it as is), which is an important aspect in building private

data structures. The private evaluation of stop conditions enables

HTF to avoid over- or under-partitioning of the space, and preserve

good accuracy. Revisiting the example in Fig. 2b, suppose that we

do not want to further partition the space when the number of

data points in a node is less than 7. Once HTF reaches node 𝐵2, the

actual node count (6) is noise-perturbed. The value of the sanitized

count may be less than 7 after sanitization, leading to pruning at

𝐵2 and stopping further partitioning. Finally, the tree’s leaf set (i.e.,

sanitized count of each leaf node) is released to the public. The total

budget used for data sanitization is denoted by 𝜖
data

.

(C) Height estimation is another important HTF step. Tree height

is an important factor in improving accuracy, as it influences the

budget allocated at each index level. HTF dedicates a relatively small

amount of budget (𝜖
height

) to determine an appropriate height.

The total budget consumption of HTF (𝜖tot) is the sum of budgets

used in each of the three steps:

𝜖tot = 𝜖prt + 𝜖data + 𝜖height (4)

The DP composition rules in the case of HTF apply as follows:

• Sequential decomposition: The sum of budgets used for node

splits along every tree path adds up to the total budget avail-

able for partitioning.

• Parallel decomposition: The budget allocated for partitioning

nodes in the same level is independent, since the nodes at

the same level have non-overlapping extents.

4 TECHNICAL APPROACH
Section 4.1 introduces the split objective function used in HTF, and

provides its sensitivity analysis. Section 4.2 focuses on HTF index

structure construction. Section 4.3 presents the data perturbation

algorithm used to protect leaf node counts.

4.1 Homogeneity-based Partitioning
Previous approaches that used kd-tree variations for DP-compliant

indexes preserved the original split heuristics of the kd-tree: namely,

node splits were performed on either median or average values

of the enclosed data points. To preserve DP, the split positions

were computed using the exponential mechanism (Section 2) which

computes a merit function for each candidate split. However, such

an approach results in poor query accuracy [13].

We propose homogeneity as the key factor for guiding splits in

the HTF index structure. This decision is based on the observation

that if all data points are uniformly distributed within a node, then

the uniformity error that results when intersecting that node with

the query range is minimized. At each index node split, we aim

to obtain two new nodes with a high degree of intra-node density

homogeneity. Of course, since the decision is data-dependent, the

split point must be computed in a DP-compliant fashion.

For a given node of the tree, suppose that the corresponding

partition covers 𝑈 × 𝑉 cells of the 𝑁 × 𝑀 grid (i.e., frequency

matrix), in which the count of data points located in its 𝑖𝑡ℎ row and

𝑗𝑡ℎ column is denoted by 𝑐𝑖 𝑗 . Without loss of generality, we discuss

the partitioning method w.r.t. the horizontal axis (i.e., rows). The

aim is to find an index 𝑘 which groups rows 1 to 𝑘 into one node and

rows 𝑘 + 1 to𝑈 into another, such that homogeneity is maximized

within each of the resulting nodes (we also refer to resulting nodes

as clusters). We emphasize that the input grid abstraction is used in

order to obtain a finite set of candidate split points. This is different

than alternate approaches that use grids to obtain DP-compliant

releases. Furthermore, the frequency matrix can be arbitrarily fined-

grained, so discretization does not impose a significant constraint.

The proposed split objective function is formally defined as:

𝑜𝑘 =

𝑘∑
𝑖=1

𝑉∑
𝑗=1

|𝑐𝑖 𝑗 − 𝜇1 | +
𝑈∑

𝑖=𝑘+1

𝑉∑
𝑗=1

|𝑐𝑖 𝑗 − 𝜇2 |, (5)

where

𝜇1 =

∑𝑘
𝑖=1

∑𝑉
𝑗=1 𝑐𝑖 𝑗

𝑘 ×𝑉 , 𝜇2 =

∑𝑈
𝑖=𝑘+1

∑𝑉
𝑗=1 𝑐𝑖 𝑗

(𝑈 − 𝑘) ×𝑉 . (6)

The optimal index 𝑘∗ minimizes the objective function.

𝑘∗ = argmin

𝑘
𝑜𝑘 (7)

Consider the example in Figure 2b and the partitioning conducted

for node 𝐵1. There exist three possible ways to split rows of the

frequency matrix: (i) separate the top row of cells resulting in

clusters {[0,0]} and {[3,3],[3,3]} yielding the objective value of zero

in Eq. (5); (ii) separate the bottom row of cells resulting in two

clusters {[0,0],[3,3]} and {[3,3]} yielding the objective value of 6,

or (iii) no division is performed, yielding the objective value of 8.

Therefore, the proposed algorithm will select the first option (𝑘∗=2),
generating two nodes 𝐶1 and 𝐶2.

Note that the value of 𝑘∗ is not private, since individual loca-
tion data were used in the process of calculating the optimal index.

Hence, a DP mechanism is required to preserve privacy. Thus, we

need to assess the sensitivity of 𝑘∗, which represents the maximum

change in the split coordinate that can occur when adding or re-

moving a single data point. The sensitivity calculation is not trivial,

since a single data point can cause the optimal split to shift to a

new position far from the non-private value. Another challenge is

that the exponential mechanism, commonly used in literature to

select candidates from a set based on a cost function, tends to have

high sensitivity, resulting in low accuracy.

4.1.1 Baseline Split Point Selection. We propose a DP-compliant

homogeneity-driven split point selection technique based on the

Laplace mechanism. As before, consider 𝑈 ×𝑉 frequency matrix

of a given node and a horizontal dimension split. Denote by 𝑜𝑘 the

objective function for split coordinate 𝑘 among the 𝑈 candidates.
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There are𝑈 possible outputs O = (𝑜1, 𝑜2, ..., 𝑜𝑈 ), one for each split

candidate. In a non-private setting, the index corresponding to the

minimum 𝑜𝑖 value would be chosen as the optimal division. To

preserve DP, given that the partitioning budget per computation is

𝜖 ′′
prt

, we add independent Laplace noise to each 𝑜𝑖 , and then select

the optimal value among all noisy outputs.

O = (𝑜1, 𝑜2, ..., 𝑜𝑈 ) = O + Lap(2/𝜖 ′′prt), (8)

where Lap(2/𝜖 ′′
prt
) denotes a tuple of 𝑈 independent samples of

Laplace noise. Note that since the grid is fixed, enumerating split

candidates as cell coordinates is data-independent, hence does not

incur disclosure risk. The Laplace noise added to each𝑜𝑖 is calibrated

according to a sensitivity of 2, as proved in Theorem 1:

Theorem 1 (Sensitivity of Partitioning). The sensitivity of
cost function 𝑜𝑘 for any given horizontal or vertical index 𝑘 is 2.

Proof. In the calculation of objective function 𝑜 for a given

index 𝑘 , adding or removing an individual data point affects only

one cell and the corresponding cluster. The objective function for

split point 𝑘 can be written as

𝑜𝑘 =

𝑘∑
𝑖=1

𝑉∑
𝑗=1

|𝑐𝑖 𝑗 − 𝜇1 | +
𝑈∑

𝑖=𝑘+1

𝑉∑
𝑗=1

|𝑐𝑖 𝑗 − 𝜇2 |, (9)

The modified objective function value following addition of a single

record to an arbitrary cell 𝑐𝑥𝑦 can be represented as

𝑜 ′
𝑘
=

𝑘∑
𝑖=1

𝑉∑
𝑗=1

|𝑐 ′𝑖 𝑗 − 𝜇
′
1
| +

𝑈∑
𝑖=𝑘+1

𝑉∑
𝑗=1

|𝑐 ′𝑖 𝑗 − 𝜇
′
2
|. (10)

Without loss of generality, assume that the additional record is

located in the first cluster which results in 𝜇 ′
1
= 𝜇1 + 1/𝑘𝑉 , 𝜇 ′

2
= 𝜇2,

and 𝑐 ′
𝑖 𝑗

being equal to 𝑐𝑖 𝑗 for all possible 𝑖 and 𝑗 except for 𝑐𝑥𝑦

where we have 𝑐 ′𝑥𝑦 = 𝑐𝑥𝑦 + 1. Therefore, the sensitivity of the

objective function has value 2 as follows:

Δ𝑜𝑘 = 𝑜𝑘 − 𝑜 ′𝑘 ≤
2(𝑘𝑉 − 1)

𝑘𝑉
≤ 2 (11)

Eq. (11) is derived using the reverse triangle inequality:���|𝑐𝑖 𝑗 − 𝜇1 − 1

𝑘𝑉
| − |𝑐𝑖 𝑗 − 𝜇1 |

��� ≤ 1

𝑘𝑉

∀{𝑖 𝑗 |𝑖 ∈ {1, ..., 𝑘} ∧ 𝑗 ∈ {1, ...,𝑉 }, 𝑖 𝑗 ≠ 𝑥𝑦}
(12)

and ���|𝑐𝑥𝑦 + 1 − 𝜇1 − 1

𝑘𝑉
| − |𝑐𝑥𝑦 − 𝜇1 |

��� ≤ 𝑘𝑉 − 1
𝑘𝑉

(13)

Similarly, the sensitivity upper bound corresponding to an individ-

ual record’s removal can be shown to be 2. □

We refer to the above approach as the baseline approach. One
challenge with the baseline is that the calculation of noise is per-

formed separately for each candidate split point, and since the

computation depends on all data points within the parent node, the

budget consumption adds up according to sequential composition.
This means that the calculation of each individual split candidate

in 𝑜𝑖 may receive only 1/𝑈 of the budget available for that level.

For large values of 𝑈 , the privacy budget per computation be-

comes too small, decreasing accuracy. This leads to an interesting

trade-off between the number of split point candidates evaluated

and the accuracy of the entire release. On one hand, increasing

the number of candidates leads to a higher likelihood of including

the optimal split coordinate in the set O; on the other hand, there

will be more noise added to each candidate’s objective function

output, leading to the selection of a sub-optimal candidate. Next, we

propose an optimization which finds a good compromise between

number of candidates and privacy budget per candidate.

4.1.2 Optimized Split Point Selection. We propose an optimization

that aims to minimize the number of split point candidate evalua-

tions required, and searches for a local minimum rather than the

global one. Algorithm 1 outlines the approach for a single split step

along the 𝑦-axis (i.e., row split). Inputs to Algorithm 1 include (i)

the frequency matrix 𝐹𝑈×𝑉 of the parent node, (ii) the total budget

allocated for the partitioning per level of the tree 𝜖 ′
prt

, and (iii) vari-

able 𝑇 which bounds the maximum number of objective function

computations – a key factor indicating the extent of search, and

thus of the budget per operation. The proposed approach is essen-

tially a search tree, determining the candidate split to minimize the

objective function’s output. The search starts from a wide range of

candidates and narrows down within each interval until reaching a

local minimum, similar to a binary search.

Let {𝑙, . . . , 𝑟 } represent the index range where the search is con-

ducted, initially set to the first and last possible index of the input

frequency matrix. At every iteration of the main ’for’ loop, the

search interval is divided into four equal length sub-intervals, in-

cluding three inner points and two boundary point. The inner points
are referred to as split indices. The objective function is calculated

for each of these candidates, and perturbed using Laplace noise to

satisfy DP. The split corresponding to the minimum value is chosen

as the center of the next search interval, and its immediate ’before’

and ’after’ split positions are assigned as the updated search bound-

aries 𝑙 and 𝑟 ). Hence, in every iteration, two new computations of

the objective function are performed, except the first run which

has a single computation. Therefore, the total number of private

evaluations sums to (2𝑇 +1) each perturbed with the privacy budget
of 𝜖 ′′

prt
= 𝜖 ′

prt
/(2𝑇 + 1).

4.2 HTF Index Structure Construction
Our proposed HTF index structure is built in accordance to the

split point selection algorithm introduced in Section 4.1. The HTF

construction pseudocode is presented in Algorithm 2. Each node

stores the rectangular spatial extent of the node (𝑛𝑜𝑑𝑒 .region), its

children (𝑛𝑜𝑑𝑒 .left and 𝑛𝑜𝑑𝑒 .right), real data count (𝑛𝑜𝑑𝑒 .count),

noisy count (𝑛𝑜𝑑𝑒 .ncount), and the node’s height in the tree.

The root of the tree represents the entire data domain (𝑁 ×𝑀
frequency matrix) and its height is denoted by ℎ. Deciding the

height of the tree is a challenging task: a large height will result in

a smaller amount of privacy budget per level, whereas a small one

does not provide sufficient granularity at the leaf level, decreasing

query precision. We estimate an advantageous height value using

a small amount of budget (𝜖
height

) to perturb the total number of

data records based on the Laplace mechanism:

|𝐷 | = |𝐷 | + 𝐿𝑎𝑝 (1/𝜖
height

). (14)
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Algorithm 1 Near-optimal Split Point Estimator

1: function GetSplitPoint( 𝐹𝑈×𝑉 , 𝜖 ′prt, 𝑎𝑥𝑖𝑠 , 𝑇 )

2: 𝜖 ′′
prt
← 𝜖 ′

prt
/(2𝑇 + 1)

3: 𝑙 ← 1, 𝑟 ← (𝑎𝑥𝑖𝑠 == 0)?𝑉 : 𝑈 #𝑎𝑥𝑖𝑠 = 0 means 𝑥-split

4: 𝑘 ← ⌊(𝑟 − 𝑙)/2⌋
5: Compute 𝑜𝑘 at 𝑎𝑥𝑖𝑠 according to Eq. (5)

6: 𝑜𝑘 ← 𝑜𝑘 + Lap(2/𝜖 ′′
prt
)

7: while 𝑙 ≤ 𝑟 and 𝑇 > 0 do
8: 𝑘1 ← ⌊(𝑘 − 𝑙)/2⌋
9: 𝑘2 ← ⌊(𝑟 − 𝑘)/2⌋
10: Compute 𝑜𝑘1 and 𝑜𝑘2 at 𝑎𝑥𝑖𝑠 according to Eq. (5)

11: ( 𝑜𝑘1, 𝑜𝑘2 )← ( 𝑜𝑘1, 𝑜𝑘2 ) + Lap(2/𝜖 ′′
prt
)

12: 𝑀𝑖𝑛𝑂𝑢𝑡𝑝𝑢𝑡 ←𝑚𝑖𝑛(𝑜𝑘 1, 𝑜𝑘 , 𝑜𝑘 2)
13: if 𝑀𝑖𝑛𝑂𝑢𝑡𝑝𝑢𝑡 = 𝑜𝑘 then
14: 𝑙 ← 𝑘1, 𝑟 ← 𝑘2
15: else if 𝑀𝑖𝑛𝑂𝑢𝑡𝑝𝑢𝑡 = 𝑜𝑘 1 then
16: 𝑘 ← 𝑘1, 𝑟 ← 𝑘

17: else
18: 𝑙 ← 𝑘, 𝑘 ← 𝑘2

19: 𝑇 ← 𝑇 − 1
20: return 𝑘

Next, we set the height to:

ℎ = log
2
( |𝐷 |𝜖tot

10

) (15)

The formula is motivated by the work in [20]. The authors show

that when data are uniformly distributed in space, using a grid

with a lower granularity of

√
|𝐷 |𝜖tot
𝑐0

×

√
|𝐷 |𝜖tot
𝑐0

improves the

mean relative error, where the value of constant 𝑐0 is set to 10

experimentally. We emphasize that the approach does not indicate

that the number of leaves on the tree is

|𝐷 |𝜖tot
𝑐0

, but the information

contained in this number is merely used as an estimator of the

tree’s height. This estimation is formally characterized in [13] and

referred to as scale-epsilon exchangeability property. The intuition
is that the error due to decreasing the amount of budget used for

the estimation is offset by having a larger number of data points in

the entire dataset.

The last input to the algorithm is the budget allocated per level

of the partitioning tree. We use uniform budget allocation to allocate
the budget between levels denoted as 𝜖 ′

prt
= 𝜖prt/ℎ.

Starting from the root node, the proposed algorithm recursively

creates two child nodes and decreases height by one. This is done

by splitting the underlying area of the node into two hyperplanes

based on Algorithm 1. The division is done on the 𝑦 dimension

if the current height is an even number and in the 𝑥 dimension

otherwise. The algorithm continues until reaching the minimum

height of zero, or to a point where no further splitting is possible.

4.3 Leaf Node Count Perturbation
Once the HTF structure is completed, the final step of our algorithm

is to release DP-compliant counts for index nodes, so that answers

Algorithm 2 DP space partitioning

1: function PrivatePartitioning(node, 𝜖 ′
prt

)

2: if 𝑛𝑜𝑑𝑒 .height=0 then
3: return 𝑛𝑜𝑑𝑒

4: 𝑎𝑥𝑖𝑠 ← 𝑛𝑜𝑑𝑒 .heightmod 2

5: 𝑛𝑜𝑑𝑒.𝑐𝑜𝑢𝑛𝑡 ← 𝑠𝑢𝑚(𝑛𝑜𝑑𝑒.region)
6: 𝑂𝑝𝑡𝐼𝑑𝑥 ← GetSplitPoint(𝑛𝑜𝑑𝑒 .FreqMatrix, 𝜖 ′

prt
, axis, T )

7: 𝑙𝑒 𝑓 𝑡𝐶 , 𝑟𝑖𝑔ℎ𝑡𝐶 ← split 𝑛𝑜𝑑𝑒 on 𝑂𝑝𝑡𝐼𝑑𝑥

8: 𝑛𝑜𝑑𝑒 .leftChild← PrivatePartitioning(𝑙𝑒 𝑓 𝑡𝐶ℎ𝑖𝑙𝑑 , 𝜖 ′
prt

)

9: 𝑛𝑜𝑑𝑒 .rightChild← PrivatePartitioning(𝑟𝑖𝑔ℎ𝑡𝐶ℎ𝑖𝑙𝑑 , 𝜖 ′
prt

)

to queries can be reconstructed from the noisy counts. The total

partitioning budget adds up to 𝜖
height

+𝜖prt, where 𝜖height was used
to estimate the tree height and 𝜖prt budget to generate the private

partitioning tree. The data perturbation step uses the remaining

𝜖
data

amount of budget and releases node counts according to the

Laplace mechanism.

One can choose various strategies to release index node counts.

At one extreme, one can simply release a noisy count for each

index node; in this case, the budget must be shared across nodes

on the same path (sequential composition), and can be re-used

across different paths (parallel composition). This approach has the

advantage of simplicity, and may do well when queries exhibit large

variance in size – it is well-understood that when perturbing large

counts, the relative error is much lower, since the Laplace noise

magnitude only depends on sensitivity, and not the actual count.

However, in practice, queries tend to be more localized, and

one may want to allocate more budget to the lower levels of the

structure, where the actual counts are smaller, thus decreasing

relative error. In fact, as another extreme, one can concentrate the

entire 𝜖
data

on the leaf level. However, doing so can also decrease

accuracy, since some leaf nodes have very small real counts.

Our approach takes a middle ground, where the available 𝜖
data

is spent to (i) determine which nodes to publish and (ii) ensure

sufficient budget remains for the noisy counts. Specifically, we

publish only leaf nodes, but these are not the same leaves returned

by the structure construction algorithm. Instead, we perform an

additional pruning step which uses the noisy counts of internal

nodes to determine a stop condition, i.e., the level at which a node

count is likely to be small enough that a further recursion along that

path is not helpful to obtain good accuracy. Effectively, we perform

pruning of the tree using a small fraction of the data budget, and

then split the remaining budget among the non-pruned nodes along

a path. This helps decrease the effective height of the tree across
each path, and hence the resulting budget per level increases.

Next, we present in detail our approach that contributes twomain

ideas: (i) how to determine smart stop (or pruning) conditions based

on noisy internal node counts, and (ii) how to allocate perturbation

budget across shortened paths.

The proposed technique is summarized in Algorithm 3: it takes

as inputs the root node of the tree generated in the data partitioning

step; the remaining budget allocated for the perturbation of data

(𝜖
data

); a tracker of accumulated budget (𝜖accu); a stop condition

predicate denoted by 𝑐𝑜𝑛𝑑 ; and the nominal tree height ℎ as com-

puted in Section 4.2. Similar to prior work [7], we use a geometric
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progression budget allocation strategy, but we enhance it to avoid

wasting budget on unnecessarily long paths. The intuition behind

this strategy is to assign more budget to the nodes located in the

lower levels of the tree, since their actual counts are lower, and

hence larger added noise impacts the relative error disproportion-

ately high. Conversely, at the higher levels of the tree, where actual

counts are much higher, the effect of the noise is negligible.

Eq. (16) formulates this goal as a convex optimization problem.

𝑚𝑖𝑛
𝜖0 ...𝜖ℎ

ℎ∑
𝑖=0

2
ℎ−𝑖/𝜖2𝑖 (16)

where (17)

ℎ∑
𝑖=0

𝜖𝑖 = 𝜖, 𝜖𝑖 > 0 ∀𝑖 = 0...ℎ (18)

Writing Karush-Kuhn-Tucker (KKT) [4] conditions, the optimal

allocation of budget can be calculated as:

𝐿(𝜖1, ..., 𝜖ℎ, 𝜆) =
ℎ∑
𝑖=0

2
ℎ−𝑖/𝜖2𝑖 + 𝜆(

ℎ∑
𝑖=0

𝜖𝑖 − 𝜖) (19)

⇒ 𝜕𝐿

𝜕𝜖𝑖
= −2

ℎ−𝑖+1

𝜖3
𝑖

+ 𝜆 = 0 (20)

⇒ 𝜖𝑖 =
2
ℎ−𝑖+1

𝜆1/3
, (21)

and substituting 𝜖𝑖 ’s in the constraint of problem the optimal budget

in the 𝑖-th level is derived as

𝜖𝑖 =
2
(ℎ−𝑖)/3 𝜖 (21/3 − 1)
(2(ℎ+1)/3 − 1)

. (22)

The algorithm starts the traversal from the partitioning tree’s

root and recursively visits the descendent nodes. Once a new node

is visited, the first step is to use the node’s height to determine

the allocated budget (𝜖 ′
data

) based on geometric progression. Recall

that the nodes on the same level follow parallel decomposition

of the budget as their underlying areas in space do not overlap.

Additionally, the algorithm keeps track of the amount of budget

used so far on the tree, optimizing the budget in later stages. Next,

the computed value of 𝜖 ′
data

is utilized to perturb the 𝑛𝑜𝑑𝑒 .count by

adding Laplace noise, resulting in noisy count 𝑛𝑜𝑑𝑒 .ncount.

The stop condition we use takes into account the noisy count in

the current internal node (i.e., count threshold); and the spatial

extent of the internal node threshold (i.e., extent threshold). If

none of the thresholds is met for the current node, the algorithm

recursively visits the node’s children; otherwise, the algorithm

prunes the tree considering that the current node should be a leaf

node. In the latter case, the algorithm subtracts the accumulated

budget used so far on that path from the root, and uses the entire

remaining budget available to perturb the count. This significantly

improves the utility, as geometric allocation tends to save most of

the budget for the lower levels of the tree. Revisiting the example

in Figure 2b, suppose that the stop condition is to prune when the

underlying area consists of less than four cells. During the data

perturbation process, the node 𝐵2 is turned into a leaf node due

to its low number of cells. At this point, the node’s children are

Algorithm 3 DP data perturbation

1: function Perturber(node, 𝜖
data

, 𝜖accu ,𝑐𝑜𝑛𝑑 , ℎ)

2: 𝑖 ← 𝑛𝑜𝑑𝑒.height

3: 𝜖 ′
data
← 2

(ℎ−𝑖)/3 𝜖
data
(21/3 − 1)

(2(ℎ+1)/3 − 1)
4: 𝜖accu = 𝜖accu + 𝜖 ′

data

5: 𝑛𝑜𝑑𝑒 .ncount = 𝑛𝑜𝑑𝑒 .count + 𝐿𝑎𝑝 (1/𝜖 ′
data
)

6: if 𝑛𝑜𝑑𝑒 .ncount≤ 𝑐𝑜𝑛𝑑 then
7: 𝜖remain = 𝜖

data
− 𝜖accu

8: 𝑛𝑜𝑑𝑒 .ncount = 𝑛𝑜𝑑𝑒 .count + 𝐿𝑎𝑝 (1/𝜖remain)
9: 𝑛𝑜𝑑𝑒 .leftChild = 𝑛𝑜𝑑𝑒 .rightChild = null
10: else
11: Perturber(𝑛𝑜𝑑𝑒 .leftChild, 𝜖

data
, 𝜖accu, 𝑐𝑜𝑛𝑑 ,ℎ)

12: Perturber(𝑛𝑜𝑑𝑒 .rightChild , 𝜖
data

, 𝜖accu, 𝑐𝑜𝑛𝑑 ,ℎ)

removed, and its noisy count is determined based on the remaining

budget available on the lower levels of the tree.

5 EXPERIMENTAL EVALUATION
5.1 Experimental Setup
We evaluate HTF on both real and synthetic datasets:

Los Angeles Dataset. This is a subset of the Veraset dataset [22]1,
including location measurements of cell phones within LA city.

In particular, we consider a large geographical region covering

a 70 × 70 km
2
area centered at latitude 34.05223 and longitude

-118.24368. The selected data generates a frequency matrix of 3.5

million data points during a time period between Jan 1-7 2020.

Synthetic dataset.We generate locations according to a Gaussian

distribution as follows: a cluster center, denoted by (𝑥𝑐 , 𝑦𝑐 ), is se-
lected uniformly at random. Next, coordinates for each data point 𝑥

and 𝑦 are drawn from a Gaussian distribution with the mean of 𝑥𝑐
and 𝑦𝑐 , respectively. We model three sparsity levels by using three

standard deviation (𝜎) settings for Gaussian variables: low (𝜎 = 20),

medium (𝜎 = 50), and high (𝜎 = 100) sparsity.

We discretize the space to a 1024 × 1024 frequency matrix. We

use as performance metric the mean relative error (MRE) for range

queries. Similar to prior work [13, 20, 23, 26], we consider a smooth-
ing factor of 20 for the relative error, to deal with cases when the

true count for a query is zero (i.e., relative error is not defined). Each

experimental run consists of 2,000 random rectangular queries with

center selected uniformly at random. We vary the size of queries to

a region covering {2%, 6%, 10%} of the dataspace.

5.2 HTF vs Data Dependent Algorithms
Data-dependent algorithms aim to exploit users’ distribution to

provide an enhanced partitioning of the map. The state-of-the-art

data-dependent approach for DP-compliant location publication is

the kd-tree technique from [7]. The kd-tree algorithm generates

the partitioning tree by splitting on median values, which are de-

termined using the exponential mechanism. We have also included

the smoothing post-processing step from [14, 20] which resolves

1
Veraset is a data-as-a-service company that provides anonymized population move-

ment data collected through location measurement signals of cell phones across USA.
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(a) 𝜖tot = 0.1, random shape and size queries. (b) 𝜖tot = 0.3, random shape and size queries. (c) 𝜖tot = 0.5, random shape and size queries.

(d) Random square queries, size 2%, 𝜖tot = 0.1. (e) Random square queries, size 6%, 𝜖tot = 0.1. (f) Random square queries, size 10%, 𝜖tot = 0.1.

Figure 3: Comparison with Data Dependent Algorithms, Los Angeles Dataset.

inconsistencies within the structure (e.g., using the fact that counts

in a hierarchy should sum to the count of an ancestor).

Fig. 3 presents the comparison of the HTF algorithmwith kd-tree

approaches, namely: (i) geometric budget allocation in addition to

smoothing and post-processing labelled as KdTree (geo); (ii) uni-
form budget allocation including smoothing and post-processing

labelled as KdTree (uniform); (iii) HTF algorithm with the partition-

ing budget per level set to 𝜖 ′
prt

= 5𝐸−4; and (iv) HTF algorithmwith

𝜖 ′
prt

= 1𝐸 − 3. Recall that 𝜖 ′
prt

denotes the budget per level of parti-

tioning, and therefore, given the tree’s height as ℎ, the remaining

budget for perturbation is derived as 𝜖
data

= 𝜖tot − 𝜖 ′prt ×ℎ − 𝜖height.
The value of 𝜖

height
in the experiments is set to 1𝐸 − 4, the HTF’s

𝑇 value is set to 3, and stop condition thresholds are set to no less

than 5 cells or 100 data points. Moreover, for the kd-tree algorithm,

15% of the total budget is allocated to implement the partitioning.

In Figs. 3a, 3b, and 3c, the MRE performance is compared for

different values of 𝜖tot over a workload of uniformly located queries

with random shape and size. HTF clearly outperforms kd-tree for

all height settings. Looking at the MRE performance, the kd-tree

algorithm follows a parabolic shape commonly occurring in tree-

based algorithms, meaning that the MRE performance reaches its

best values at a particular height, and further partitioning of the

space increases the error. This is caused by excessive partitioning

in low-density areas. HTF, on the other hand, is applying stop

conditions to avoid the adverse effects of over-partitioning, and is

able to estimate the optimal height beforehand. Figs. 3d, 3e, and

3f, show the results when varying query size (for square shape

queries). HTF outperforms the kd-tree algorithm significantly.

5.3 HTF vs Grid-based Algorithms
Grid-based approaches are mostly data-independent, and they parti-

tion the space using regular grids. The uniform grid (UG) approach

uses a single-layer fixed size grid, whereas its successor adaptive

grid (AG) method considers two layers of regular grids: the first

layer is similar to UG, whereas the second uses a small amount of

data-dependent information (i.e., noisy query results on the first

layer) to tune the second layer grid granularity.

Fig. 4 presents the comparison of HTF with AG and UG. For HTF,

we consider several stop condition thresholds. HTF consistently

outperforms grid-based approaches, especially when the total pri-

vacy budget is lower (i.e., more stringent privacy requirements).

The impact of the stop count condition on HTF depends on the

underlying distribution of data points. For the Los Angeles dataset,

MRE is relatively larger for small values of 𝜖tot. The performance

improves and reaches its near-optimal values around stop count

50, and ultimately worsens when the stop count becomes larger.

This matches our expectation as, on one hand, small values of stop

count result in over-partitioning, and on the other hand, when the

stop count is too large, the partitioning tree cannot reach the ideal

heights, resulting in high MRE values.

Figures 4d, 4e, and 4f, show the obtained results for varying

query sizes (2, 6, and 10% of the data domain). HTF outperforms

both AG and UG. Note that all three algorithms are adaptive and

change their partitioning according to the number of data points.

Therefore, in low privacy regimes, the structure of algorithms may

cause fluctuations in the accuracy. However, as the privacy budget

grows, the algorithms reach their maximum partitioning limit, and

increasing the budget always results in lower MRE.

5.4 HTF vs Data Independent Algorithms
The most prominent DP-compliant data-independent technique [7]

uses QuadTrees. The technique recursively partitions the space into

four equal size quadrants. Two commonly used budget allocation

techniques used in [7] are geometric budget allocation (geo) and

uniform budget allocation. For a fair comparison, we have also

included the smoothing post-processing step from [20, 24].
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(a) Stop Count = 10, random shape/size queries. (b) Stop Count = 50, random shape/size queries. (c) Stop Count = 100, random shape/size queries

(d) Random square queries, size 2%. (e) Random square queries, size 6%. (f) Random square queries, size 10%.

Figure 4: Comparison to Grid-based Algorithms, Los Angeles Dataset.

(a) 𝜖tot = 0.1, random shape and size queries. (b) 𝜖tot = 0.3, random shape and size queries. (c) 𝜖tot = 0.5, random shape and size queries.

(d) Random square queries, size 2%. (e) Random square queries, size 6%. (f) Random square queries, size 10%.

Figure 5: Comparison to Data Independent Algorithms, Los Angeles Dataset.

Fig. 5 presents the comparison results. Figures 5a, 5b, 5c are gen-

erated using random shape and size queries, and several different

height settings. Note that the fanout of QuadTrees is double the

fanout of HTF, so the height represented by 2𝑘 in the figures cor-

responds to the implementation of QuadTree with the height of 𝑘 .

The error of the QuadTree approach is large for small heights, then

improves to its optimal value, and rises again significantly as height

further increases, due to over-partitioning. Similar to kd-trees, no

systematic method has been developed for QuadTree to determine

optimal height, whereas the HTF height selection heuristic yields

levels 15, 16, and 17 for the allocated privacy budget of 0.1, 0.3, and

0.5, respectively. HTF outperforms QuadTree for all settings of 𝜖tot.

Figures 5d, 5e, and 5f show the accuracy of HTF and QuadTree

for square-shaped randomly placed queries of varying size. HTF

outperforms Quadtree in all cases.

5.5 Additional Benchmarks
To further validate HTF performance, we run experiments on the

Los Angeles dataset as well as six synthetic datasets generated

using Gaussian distribution. Fig. 6 presents the comparison of all

algorithms with randomly generated query workload and a privacy

budget of 𝜖tot = 0.1. Three additional algorithms are used as com-

parison benchmarks, (i) Singular algorithm– preserving differential

privacy by adding independent Laplace noise to each entry of the

frequency matrix, (ii) Uniform algorithm in which Laplace noise is

added to the total count of the grid with the assumption that data



SIGSPATIAL ’21, November 2–5, 2021, Beijing, China Shaham et al.

Figure 6: Mixed workloads, 𝜖tot = 0.1, All Datasets.
are uniformly distributed within the grid, and (iii) the Privlet [23]
algorithm based on wavelet transformations.

Fig. 6 shows that HTF consistently outperforms existing ap-

proaches. For the denser datasets (𝑠𝑖𝑔𝑚𝑎 = 20) the gain compared

to approaches designed for uniform data (e.g., UG, AG, Quadtrees)

is lower. As data sparsity grows, the difference in accuracy between

HTF and the benchmarks increases. HTF performs best on a relative

basis for lower 𝜖 ′
prt

, i.e., more stringent privacy requirements.

6 RELATEDWORK
The comprehensive benchmark analysis in [13] showed that the

dimensionality and scale of the data directly determine the accuracy

of an algorithm. For one-dimensional data, both data-dependent and

data-independent methods perform well. The hierarchical method

in [14] uses a strategy consisting of hierarchically structured range

queries arranged as a tree. Similar methods (e.g., [26]) differ in their

approach to determining the tree’s branching factor and allocating

appropriate budget to each of its level. Data-dependent techniques

on the other hand exploit correlation in real-world datasets in order

to boost the accuracy of histograms. They first compress the data

without loss: for example, EFPA [1] applies the Discrete Fourier

Transform, whereas DAWA [16] uses dynamic programming to

compute the least cost partitioning. The compressed data is then

sanitized, for example, directly with LPM [1] or with a greedy

algorithm that tunes the privacy budget to a sample query set given

in advance [16]. Privlet [23] compresses data through a wavelet

transformation such that the the noise incurred by a range query

scales proportionately to the logarithm of its length.

In the 2D scenario, the main focus is on spatial datasets that

exhibit sparse and skewed data distributions, where only data-

dependent approaches tend to be competitive. General-purpose

mechanisms such as the matrix mechanism of Li andMiklau [17, 18]

and its workload-aware counterpart DAWA [16] operate over a dis-

crete 1D domain, and may be extended to spatial data by applying

a Hilbert transform to the 2D data representation [13]. However,

approaches specialized for answering spatial range queries, such

as UG [20], AG [20], QuadTree [7] and kd-tree [25] outperform

general-purpose mechanisms [13]. Xiao et al. [25] present the ear-

liest attempt at a DP-compliant spatial decomposition algorithm

based on the kd tree. It first imposes a uniform grid over the data

domain, and then constructs a private kd tree over the cells in the

grid. While the simplicity of the approach is appealing, the split

criterion is solely based on the median, leading to high-sensitivity

and split partitions with low intra-node homogeneity.

Recent work focuses on high-dimensional data, where the key

idea is to reduce the impact of the higher dimensionality. The most

accurate algorithm in this class is High-Dimensional Matrix Mech-

anism (HDMM) [19] which represents queries and data as vectors

and uses sophisticated optimization and inference techniques to

answer them. DPCube [24] searches for dense sub-cubes to release

privately. Some of the privacy budget is used to obtain noisy counts

over a regular partitioning, which is then refined to a standard

kd-tree. Fresh noisy counts for the partitions are obtained with the

remaining budget, and a final inference step resolves inconsisten-

cies between the two sets of counts.

In contrast to DP-compliant aggregate statistics published by

a data curator, significant work has also been devoted to prevent-

ing the data curators themselves (such as a location based service

provider) from inferring a mobile user’s location in the online set-

ting [2, 11, 21]. Spatial 𝑘-anonymity (SKA) [11, 12] generalizes the

specific position of the querying user to a region that encloses at

least 𝑘 users. Geo-indistinguishability [2] extends the DP definition

to the Euclidean space and obfuscates user check-ins to protect

the exact location coordinates. Synthesizing privacy-preserving

location trajectories is explored in [3]. Finally, reporting high-order

statistics of mobility data in the context of DP has been pursued in

[5, 6, 26], where the focus is on releasing trajectories using noisy

counts of prefixes or 𝑛-grams in a trajectory.

7 CONCLUSIONS AND FUTUREWORK
We proposed a novel approach to privacy-preserving release of loca-

tion histograms with differential privacy guarantees. Our technique

capitalizes on the key observation that density homogeneity within

partitions of the constructed index structure reduces the error in-

troduced by DP noise. We devised low-sensitivity strategies for

finding split coordinates in a DP-compliant way, and implemented

effective privacy budget allocation strategies across different stages

of the data sanitization process. In future work, we plan to extend

our approach to trajectory data, which are more challenging due

to their high-dimensionality. We also plan to combine our data

sanitization techniques with machine learning approaches, in order

to further boost the accuracy of DP-compliant location queries.

ACKNOWLEDGEMENT
This research has been funded in part by NSF grants IIS-1910950,

IIS-1909806 and CNS-2027794, the USC Integrated Media Systems

Center (IMSC), and an unrestricted cash gift from Microsoft Re-

search. Any opinions, findings, and conclusions or recommenda-

tions expressed in this material are those of the author(s) and do

not necessarily reflect the views of any of the sponsors such as the

NSF.

REFERENCES
[1] G. Acs, C. Castelluccia, and R. Chen. Differentially private histogram publishing

through lossy compression. In 2012 IEEE 12th International Conference on Data
Mining, pages 1–10. IEEE, 2012.



HTF: Homogeneous Tree Framework for Differentially-Private Release of Location Data SIGSPATIAL ’21, November 2–5, 2021, Beijing, China

[2] M. E. Andrés, N. E. Bordenabe, K. Chatzikokolakis, and C. Palamidessi. Geo-

indistinguishability: Differential privacy for location-based systems. In ACM
CCS, 2013.

[3] V. Bindschaedler and R. Shokri. Synthesizing plausible privacy-preserving loca-

tion traces. In 2016 IEEE Symposium on Security and Privacy (SP), pages 546–563.
IEEE, 2016.

[4] S. Boyd, S. P. Boyd, and L. Vandenberghe. Convex optimization. Cambridge

university press, 2004.

[5] R. Chen, G. Acs, and C. Castelluccia. Differentially private sequential data

publication via variable-length n-grams. In ACM CCS, pages 638–649, 2012.
[6] R. Chen, B. C. Fung, B. C. Desai, and N. M. Sossou. Differentially private transit

data publication: A case study on the montreal transportation system. In Proceed-
ings of the 18th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pages 213–221, 2012.

[7] G. Cormode, C. Procopiuc, D. Srivastava, E. Shen, and T. Yu. Differentially

private spatial decompositions. In 2012 IEEE 28th International Conference on
Data Engineering, pages 20–31. IEEE, 2012.

[8] C. Dwork. Differential privacy: A survey of results. In International conference
on theory and applications of models of computation, pages 1–19. Springer, 2008.

[9] C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating noise to sensitivity

in private data analysis. In Theory of cryptography conference, pages 265–284.
Springer, 2006.

[10] C. Dwork, A. Roth, et al. The algorithmic foundations of differential privacy.

Foundations and Trends in Theoretical Computer Science, 9(3-4):211–407, 2014.
[11] G. Ghinita, K. Zhao, D. Papadias, and P. Kalnis. A reciprocal framework for

spatial k-anonymity. Information Systems, 35(3):299–314, 2010.
[12] M. Gruteser and D. Grunwald. Anonymous usage of location-based services

through spatial and temporal cloaking. In Proceedings of the 1st international
conference on Mobile systems, applications and services, pages 31–42. ACM, 2003.

[13] M. Hay, A. Machanavajjhala, G. Miklau, Y. Chen, and D. Zhang. Principled

evaluation of differentially private algorithms using dpbench. In Proceedings of
the 2016 International Conference on Management of Data, pages 139–154, 2016.

[14] M. Hay, V. Rastogi, G. Miklau, and D. Suciu. Boosting the accuracy of differentially

private histograms through consistency. Proc. VLDB Endow., 3(1–2):1021–1032,
Sept. 2010.

[15] A. Inan, M. Kantarcioglu, G. Ghinita, and E. Bertino. Private record matching

using differential privacy. In Proceedings of the 13th International Conference on
Extending Database Technology, pages 123–134, 2010.

[16] C. Li, M. Hay, G. Miklau, and Y. Wang. A data-and workload-aware algorithm

for range queries under differential privacy. Proceedings of the VLDB Endowment,
7(5):341–352, 2014.

[17] C. Li and G. Miklau. An adaptive mechanism for accurate query answering under

differential privacy. Proc. VLDB Endow., 5(6):514–525, 2012.
[18] C. Li and G. Miklau. Optimal error of query sets under the differentially-private

matrix mechanism. In Proceedings of the 16th International Conference on Database
Theory, pages 272–283, 2013.

[19] R. McKenna, G. Miklau, M. Hay, and A. Machanavajjhala. Optimizing error

of high-dimensional statistical queries under differential privacy. Proc. VLDB
Endow., 11(10):1206–1219, 2018.

[20] W. Qardaji, W. Yang, and N. Li. Differentially private grids for geospatial data. In

2013 IEEE 29th international conference on data engineering (ICDE), pages 757–768.
IEEE, 2013.

[21] D. Quercia, I. Leontiadis, L. McNamara, C. Mascolo, and J. Crowcroft. Spotme

if you can: Randomized responses for location obfuscation on mobile phones.

In 2011 31st International Conference on Distributed Computing Systems, pages
363–372. IEEE, 2011.

[22] Veraset. Veraset Movement data for the USA, The largest, deepest

and broadest available movement dataset (anonymized GPS signals).

https://datarade.ai/data-products/veraset-movement-data-for-the-usa-

the-largest-deepest-and-broadest-available-movement-dataset-veraset, 2021.

[Online; accessed 19-May-2021].

[23] X. Xiao, G. Wang, and J. Gehrke. Differential privacy via wavelet transforms.

IEEE Transactions on knowledge and data engineering, 23(8):1200–1214, 2010.
[24] Y. Xiao, L. Xiong, L. Fan, S. Goryczka, and H. Li. Dpcube: Differentially private

histogram release through multidimensional partitioning. 7(3):195–222, 2014.

[25] Y. Xiao, L. Xiong, and C. Yuan. Differentially private data release through multidi-

mensional partitioning. InWorkshop on Secure Data Management, pages 150–168.
Springer, 2010.

[26] J. Zhang, X. Xiao, and X. Xie. Privtree: A differentially private algorithm for

hierarchical decompositions. In Proceedings of the 2016 International Conference
on Management of Data, pages 155–170, 2016.

https://datarade.ai/data-products/veraset-movement-data-for-the-usa-the-largest-deepest-and-broadest-available-movement-dataset-veraset
https://datarade.ai/data-products/veraset-movement-data-for-the-usa-the-largest-deepest-and-broadest-available-movement-dataset-veraset

	Abstract
	1 Introduction
	2 Background and Definitions
	2.1 Differential Privacy
	2.2 Problem Formulation

	3 Homogeneous-Tree Framework
	4 Technical Approach
	4.1 Homogeneity-based Partitioning
	4.2 HTF Index Structure Construction
	4.3 Leaf Node Count Perturbation

	5 Experimental Evaluation
	5.1 Experimental Setup
	5.2 HTF vs Data Dependent Algorithms
	5.3 HTF vs Grid-based Algorithms
	5.4 HTF vs Data Independent Algorithms
	5.5 Additional Benchmarks

	6 Related Work
	7 Conclusions and Future Work
	References

