
Reliable Geofence Activation with Sparse and
Sporadic Location Measurements

Kien Nguyen
Department of Computer Science
University of Southern California

Los Angeles, CA, USA
kien.nguyen@usc.edu

John Krumm
Microsoft Research

Microsoft Corporation
Redmond, WA, USA

jckrumm@microsoft.com

Abstract—Geofences are a fundamental tool of location-based
services. A geofence is usually activated by detecting a loca-
tion measurement inside the geofence region. However, location
measurements such as GPS often appear sporadically on smart-
phones, partly due to weak signals or privacy preservation. Users
may restrict location sensing, or conserve energy, because sensing
locations can consume a significant amount of battery. These
unpredictable, and sometimes long, gaps between measurements
mean that entry into a geofence can go completely undetected. In
this paper we argue that short term location prediction can help
alleviate this problem by computing the probability of entering a
geofence in the future. Complicating this prediction approach is
the fact that another location measurement could appear at any
time, making the prediction redundant and wasteful. Therefore,
we develop a framework that accounts for uncertain location
predictions and the possibility of new measurements to trigger
geofence activations. Our framework optimizes over the benefits
and costs of correct and incorrect geofence activations, leading
to an algorithm that reacts intelligently to the uncertainties of
future movements and measurements.

Index Terms—location-based services, geofence, sporadic loca-
tions, location prediction, decision theory, payoff matrix

I. INTRODUCTION

Geofences are virtual geographic regions used to trigger
certain actions upon entry or exit. A typical example is a
region near a store where an advertiser may want to deliver
ads to the phones of people in the region. When someone with
a location-sensitive device enters a geofence, some action is
automatically triggered.

One problem with geofences is they may fail to activate if
there is no location measurement taken inside the geofence,
even if the person passes through. This problem can occur
whenever the gaps between measurements are large enough
to miss a geofence, including when a person is walking or
in a vehicle. With a high enough sampling rate, this is not
a problem. However, geofence applications may not able to
proactively trigger new measurements. One reason is when the
location signal is too weak, e.g., inside a tunnel or surrounded
by high buildings. Another reason is that user may only allow
such applications to monitor location readings after a time
delay due to, e.g., privacy concerns. Yet another reason is
that sensing location, especially with GPS, drains a phone’s
battery. For instance, Liu et al. [1] estimate that running a GPS
receiver continuously will drain a phone’s battery in about six

hours. Therefore, some power management programs of the
device may restrict, e.g., the frequency of location sensing.
This leads to conservative sensing, where measurements are
often relatively far apart in time. As an example, Figure 1
shows a histogram of time spans between measurements for
a random sample of 1000 users (described in detail later in
Section IV). It shows that over half the points are separated
by five minutes or more, making it easy to miss a geofence
depending on the geofence’s size and the user’s speed. Our
results in Section V show that the current practice of waiting
for a measurement to trigger a geofence performs poorly.

Fig. 1: The time between location measurements can be long
enough to miss a geofence.

Short term location prediction can help alleviate this prob-
lem by giving the probability that the person will enter the
geofence in the near future. However, there are two issues: (1)
probability by itself may not be sufficient to make the optimal,
benefit-maximizing decision of activating the geofence or not,
and (2) a new measurement could arrive at any time, wasting
prediction computations that go beyond that time.

In this paper we develop a novel framework that uses short
term location prediction to solve the problem of triggering ge-
ofences with sparse and sporadic location measurements. Our
framework takes into account both the predictive uncertainty
for decision making and the potentially wasted computation
issues. The fundamental approach is to use decision theory
as a principled way to manage the trade-off between costs
and benefits of acting or waiting. Decision theory is enabled
by computing the probability that a user will intersect the
geofence before the next measurement is available using



a probabilistic location prediction method. This is a new
approach for deciding whether or not to trigger a geofence,
reflecting richer, more subtle reasoning than the traditional
method of passively waiting for a point to appear inside
the geofence. In addition, when we use location prediction,
decision theory helps bridge the gap between the accuracy of
location prediction and the benefit/penalty of geofence triggers
in a principled way. We further reason explicitly about the
temporally sporadic nature of location measurements by mod-
eling their arrival times as Poisson distributed. This reasoning
gives us a principled way to stop the prediction process, thus
avoiding redundant predictions. We show how our approach
is superior to the baseline technique of using only the given
measurements without considering the possibility of missing
a geofence. To the best of our knowledge, in the context
of geofences, neither probabilistic location prediction, nor
decision theory, nor reasoning about sporadic measurements
has appeared in the research literature before.

For both privacy and energy conservation, our approach
is designed to be simple enough to run on the user’s local
device rather than transmitting any location data. Likewise, it
does not trigger any new measurements, relying instead on
opportunistic measurements that are made available by other
processes on the device.

Specifically, our new research contributions are:

• Probabilistically predicting geofence intersections
• Modeling costs/benefits of geofence activations with de-

cision theory
• Reasoning about temporally sporadic location measure-

ments with a Poisson distribution
• Extensive experiments over different settings for location

measurements and algorithmic parameters

II. RELATED WORK

While it seems obvious to use location prediction with ge-
ofences, there is surprisingly little research on the topic. In [2],
Zimbelman et al. characterize the problem of trying to detect
when a moving geofence (e.g. around a person) intersects a
static location. Fattepur et al. [3] present a state transition
algorithm for a GNSS chipset that does simple reasoning about
geofences, but does not use location prediction. The work most
closely related to ours is from Nakagawa et al. [4]. Their
solution to the problem of missing geofences is to adaptively
increase the location sampling rate when the user is getting
closer to a geofence.

While there has not been much research on geofence
intersection detection, there is a large literature on location
prediction, which is one of the central components of our
approach. A survey of location prediction approaches appears
in [5]. In the realm of short term, probabilistic location predic-
tion, a classic example is the Kalman filter [6], which creates
a Gaussian-distributed prediction as part of its measurement
update algorithm. The particle filter [7] also has a prediction
step, as does the unscented Kalman filter [8].

III. DECISION THEORY WITH LOCATION PREDICTIONS

A. Decision Theory

A geofence triggers some action when a user enters. How-
ever, a user’s location typically has some uncertainty due to
measurement noise or prediction error. This leads to uncer-
tainty about whether or not the user is inside the geofence.
We represent a user’s two-dimensional location coordinates at
time t as the vector x(t) = [x(t), y(t)]T , distributed according
to the probability distribution PX(t)

(
x(t)

)
, as in Figure 2. If

the geofence region is represented by R, the scalar probability
that the user is inside the geofence is

pR(t) =

∫
R
PX(t)

(
x(t)

)
dx (1)

Based on pR(t), the geofence can be programmed to either
act or wait: acting means the geofence triggers some action,
e.g. the delivery of an advertisement (ads) to the user, while
waiting means nothing is triggered. A payoff matrix captures
the value V (t) of acting or waiting depending on whether or
not the user is inside the geofence, shown in Table I. The
value of acting when the user is inside R is β, which would
normally be positive, reflecting the intended functioning of
the geofence. The value of the two error conditions are acting
when the user is outside (δ) and waiting when the user is inside
(α). Both of these values would likely be negative. Waiting
while the user is outside is the correct decision, but the payoff
in this case would normally be zero. The exact values of the
elements of the payoff matrix depend on the scenario. For ads,
the values would depend on the cost of delivering an ad and
the response rate. These values are normally proprietary and
beyond the scope of this paper, although this would be an
interesting extension of our work. We explore different payoff
matrix settings in our experiments. Using a payoff matrix
instead of raw prediction accuracy has two advantages. First,
it allows us to express and evaluate the true costs of mistakes
and successes. Second, by using costs, it lets the algorithm
optimize for cost rather than raw accuracy, which can lead to
different decisions.

user state
in out

decision wait α 0
act β δ

TABLE I: The payoff matrix gives values of decisions depend-
ing on the state of the user.

The expected payoff values, given an activation decision,
can be computed from pR(t) and the payoff matrix:

E
[
V (t) | wait

]
= αpR(t) + 0(1− pR(t)) (2)

E
[
V (t) | act

]
= βpR(t) + δ(1− pR(t)) (3)

E
[
V (t)

]
= max

(
E
[
V (t) | wait

]
,E
[
V (t) | act

])
(4)



The decision to wait or act corresponds to which has the larger
expected value. This changes with time depending on pR(t).
In our scenario, after the first ”act” decision, the geofence is
deactivated, disallowing any acts for that user for some time.

This rule for waiting or acting, based on Equation 4, is a
principled way to account for the costs and benefits of acting
under uncertainty for geofences, and is our main contribution
to the problem of geofence activation. The values from the
payoff matrix allow the geofence owner (e.g. advertiser) to
quantify the urgency of delivering a message to someone who
should receive it (β), versus the cost of not delivering it to
someone who should receive it (α), versus the cost of mistak-
enly delivering it to someone who should not receive it (δ).
The probability pR(t) accounts for measurement uncertainty,
and would be especially applicable for less precise location
sensing modalities, e.g. cell towers or WiFi. However, we are
interested in further dealing with the problem of low sample
rate data, when entering a geofence can be completely missed.
For this we can use location prediction, described next.

B. Location Prediction

We can predict whether or not a user will be inside a
geofence by predicting the user’s location x(t). Referring to
Figure 2, we reset the clock to t = 0 at the most recent
measurement x0, thus x(0) = x0. Then we make probabilistic
predictions pR(t) for t > 0. At each t > 0, we evaluate
Equation 4, and we ”act” the first time E

[
V (t) | act

]
>

E
[
V (t) | wait

]
. We call this time t̂. Once we have acted on

the user (e.g. sent a message) for this geofence, we will not
act again for that user on that geofence, or we may not act
again until some preset time elapses, such as a few hours.

Fig. 2: t = 0 is the time of the most recent measurement. Our
algorithm makes probabilistic predictions of location to infer
the future probability of being inside the geofence.

Our framework accepts any type of probabilistic location
prediction. That is, the prediction must produce a distribution
x(t) ∼ PX(t)

(
x(t)

)
for t > 0. However, as we aim for mobile

applications, we also prefer a light-weight model that can
run on-device, even without sending measurements out of the
device. Therefore, for our experiments, we predicted location
with Gaussian processes (GPs) [9]. We create independent
GPs for x(t) and y(t) to predict two-dimensional location
x(t) = [x(t), y(t)]T .

Several choices are required for implementing a GP. We
nominally assume a standard deviation of σm = 3 meters as
the measurement Gaussian noise. We use a common squared
exponential kernel for our GPs. A GP also depends on a mean

function m(t) which defines the expected mean values of the
data points. Standard GPs are assumed to have a zero mean.

Although a GP can capture the trends of the user’s move-
ment to predict future locations, the short-term movement may
not follow such trends. Therefore, we propose an adaptation of
the GP for short-term location prediction, aiming to make the
prediction rely more on the linear extrapolation of the most
recent measurements. For this, we utilize the mean function
m(t) and set it to be the line going through the two latest
points x(t−1) and x(t0). We denote this as GP + mean func.

C. Sporadic Location Measurements

In Section III-B, we showed how to compute t̂, which is
the first time when the expected value of acting is predicted
to exceed the expected value of waiting. However, t̂ may be
very large, especially if the geofence is a long distance from
the user, leading to long, possibly infinite, computations of
the location predictions for those geofences. In these cases, a
new measurement could occur before the computed t̂, causing
much of the previous computation to become wasted. This
section describes a principled way to suspend the prediction.

Assuming the timing of location measurements follows a
Poisson process, we can compute the probability of receiving
a new measurement as a function of time. A Poisson process
is characterized by λ, which is the average number of events
occurring in some predefined interval ∆T . For us, these events
are location measurements, and the predefined interval is set
arbitrarily to one minute. The parameter λ is called the event
rate or the rate parameter. The Poisson distribution gives the
probability of receiving at least one measurement by time t as
1 − e−λt. Our algorithm stops making predictions when the
probability of having at least one measurement is sufficiently
high, i.e. when 1− e−λt > 1− ϵ, for some small value of ϵ,
0 < ϵ < 1, called maximum prediction threshold. This occurs
at time t∗ = − ln(ϵ)/λ.

IV. EXPERIMENTAL DATA

A. Data Source

The location data came from a commercial aggregator [10]
that ingests, cleans, and sells location data gathered from
mobile phones. The data comes from individuals using their
phone normally, occasionally running applications that trig-
ger location measurements, e.g. weather, web browsing, or
navigation. This data simulates a geofencing application that
is not actively taking location measurements, instead relying
passively on measurements triggered by other applications.

For each of 1000 randomly selected users with at least one
data point, we extracted all their data for the date of 1 June
2019 to understand representative statistics on the quantity and
frequency of location data that is normally available from a
user. As we show below, the data from these 1000 users varied
in terms of the number of data points.

For our experiments, we used the same data source from
the same day, but this time we extracted data from the 1000
users with the most data points for that day. We refer to these
two data sets as the ”random” and ”high density” sets. The



random data set is used to understand representative statistics
of available data, while the high density data is used to
simulate various data densities, by controlled subsampling, to
understand how our algorithm performs.

B. Data Statistics

A trajectory S of a user is a sequence of location measure-
ments {x(t1),x(t2), . . . ,x(tNS )} where NS is the number of
measurements and ∀i < NS : ti < ti+1. High density means
that, on average, the time gap |ti − ti+1| is small.

In Section III-C we show how to compute a cutoff time
for predictions assuming that timing of new location measure-
ments is governed by a Poisson process. The sole parameter
of the Poisson distribution is λ, which is the mean number
of events over some unit time. For each of the 1000 random
trajectories, we computed the maximum likelihood value of
λ. The mode of this distribution of λ’s occurs at 0.04, which
corresponds to one measurement every 25 minutes.

We subjected each random trajectory to a statistical test
to determine if the timing of the measurements was Poisson
distributed. Using the chi-square test [11] for Poisson distri-
butions, we found that 88.3% of the random users passed at
the p = 0.05 level. This indicates that the Poisson distribu-
tion is appropriate for modeling the arrival time of location
measurements in our data. For the high density data, none of
the users passed the statistical test, but these trajectories are
outliers, chosen for experimental advantages.

C. Data Pre-Processing

We processed the high density data to simulate the Poisson
processes of the randomly chosen users. Our goal was to find,
in the high density data, long sequences of measurements
with temporally uniform sampling, since uniform sampling
is convenient for down-sampling to measurement times that
are Poisson distributed. Due to space limitation, details can be
found in our extended version [12]. This process results in 530
total trajectories from 165 unique users. For these trajectories,
we used the first five minutes for training the parameters of
the GP and used the remaining data for testing.

In the test period (i.e. after five minutes) for each of these
trajectories, we computed the first time it entered the geofence,
tin, and the first time it exited the geofence, tout. Normally this
required interpolation, where we assumed constant, straight
line speed between temporally adjacent points.

We converted the latitude/longitude coordinates in each
trajectory to local Euclidean coordinates (x, y) in meters.
To simulate a Poisson process from our uniformly sampled
trajectories, we sample points from the uniform trajectories
with a Bernoulli process [13], which is the discrete-time
version of a Poisson process.

V. EXPERIMENTS

A. Evaluation metric

We first describe our evaluation metric to evaluate the effec-
tiveness of our technique for the geofence decision problem.
We propose a “realized value” score that is analogous to the

expected value in Equation 4. The realized value is the actual
payoff, as per the payoff matrix, of using an algorithm to make
the act or wait decisions for geofences. Starting first with a
single point below, we show how we aggregate the realized
value over multiple points in a trajectory S, multiple geofences
on the map R, and multiple trajectories in a test set.

We first calculate the realized value, called VR,S(ti), for
each measurement x(ti) ∈ S \x(tNS ). The last measurement
x(tNS ) is used as a pivot and is not evaluated.

Given tin and tout as the first timestamps that the user enters
and exits a geofence R, ti and ti+1 as the timestamps of i-th
and (i+1)-th measurements, and t̂ as the predicted timestamp
that the geofence should ”act” when we receive x(ti), the
realized value of the i-th measurement VR,S(ti) is defined as:

VR,S(ti) =


α, ti+1 < t̂ ∧ ti ≤ tout ≤ ti+1,

β, t̂ ≤ ti+1 ∧ t̂ ∈ [tin, tout],

δ, t̂ ≤ ti+1 ∧ t̂ /∈ [tin, tout].

(5)

Elaborating on the compact notation in Equation 5, the con-
dition t̂ ≤ ti+1 indicates we ”act” before the next measurement
arrives. Then, we receive reward β or penalty δ if we act when
the actual user state is inside (i.e., t̂ ∈ [tin, tout]) or outside
(i.e., t̂ /∈ [tin, tout]), respectively. This explains the β and δ
payoffs in Equation 5.

In the case of ti+1 < t̂, which means we ”wait” before
the next measurement arrives, we further investigate different
cases of [tin, tout] and [ti, ti+1] to decide the reward/penalty.
These cases are illustrated in Figure 3. In case (1) where tout <
ti, we ”wait” while the user is outside, thus, the payoff is 0. In
cases (2) and (3) where ti ≤ tout ≤ ti+1, we ”wait” while the
user is inside, thus the payoff is α. In cases (4), (5), and (6)
where have ti+1 < tout, although the user might be inside, we
still have a chance to act when the next measurement arrives.
Therefore, the evaluation is deferred to the next measurements
and the payoff of the current measurement is 0. In short, we
only receive payoff α when ti ≤ tout ≤ ti+1. This explains
the α payoff in Equation 5.

Fig. 3: Illustrations of cases when we ”wait” (i.e., ti+1 < t̂).

For a given trajectory, we should only act on a geofence
a maximum of one time. Thus, for evaluation purposes, we
stop calculating the realized value for this trajectory after
the measurement x(tk) for which we receive β (i.e. act
when inside the geofence), and set VR,S(ti) of all following



measurements to 0, i.e. ∀i ∈ [k + 1, NS − 1] : VR,S(ti) = 0.
This means we can receive the payoff β only once.

The realized value of a whole trajectory S is then the sum
of realized values of all the measurements of S:

VR,S =

NS−1∑
i=1

VR,S(ti) (6)

To avoid any bias towards any geofence positioning, we
consider sum of VR,S of a trajectory S over a set of multiple
geofences as the score of S:

VS =
∑
R

VR,S (7)

Our set of experimental geofences is a grid described below.
The final realized value is the average of VS over all NT

trajectories:

V =
1

NT

∑
S

VS (8)

B. Baselines

Our baseline algorithm is called Passive Wait (PW), where
the geofence passively waits to act until there is an actual
location measurement inside. This appears to be the basis of
the algorithm used by both iOS [14] and Android [15]. For-
mally, when receiving the most recent measurement x(t0) =(
x(t0), y(t0)

)
at time t = t0 = 0 with the measurement noise

defined by the standard deviation σm, then for each t < t∗,
the PW method makes a prediction:

x(t) ∼ N
(
µ(t),Σ(t)

)
= N

([
x(t0)
y(t0)

]
, σ2

mI

)
(9)

where I is the 2×2 identity matrix. Although this is a simple
approach, it appears to be the most sophisticated existing
algorithm for geofences, both in practice and in research.

C. Experiment Setup

We present several experiments on 530 trajectories from
165 unique users, processed from high-density data described
in Section IV. We experiment with a thorough range of
experimental parameters to show our algorithm performs well
in a variety of operating conditions. Due to space limitation,
some experiments are only shown in the extended version [12].

For each trajectory, we created a grid of geofences centered
at the last training point. The grid covered the entire bounding
box of the testing data of the trajectory. In order to account for
predictions beyond the bounds of the trajectory, we expanded
the grid on all four sides by 18 kilometers. This expansion
assumed a maximum driving speed of 30m/s (or 108km/h) and
a duration of 600 seconds. The choice of 600(s) is explained
in our discussion of ϵ in Section V-D2.

Each grid cell is considered as a geofence with size L×L.
We tested with sizes L ∈ {500, 1000, 1500, 2000, 2500} me-
ters for square cells. The bold value indicates the default value
used in the experiments where this parameter is fixed. With up
to 13,824 geofences, combined with the 530 trajectories, this
gives a test size of over 7 million trajectory-geofence pairs.

Each trajectory is sub-sampled with λ ∈
{0.25, 0.5, 1, 2, 4, 8} with a Poisson time interval ∆T
of one minute. Roughly speaking, these values of λ mean
we expect to receive one measurement from every 4 minutes
(λ = 1

4 ) to every 7.5 seconds (λ = 8). The maximum
prediction threshold ϵ is set to ϵ ∈ {0.1, 0.2, 0.3, . . . , 0.9}.

Two settings for the payoff matrix is considered to represent
two real-world use cases: the ads matrix where (α, β, δ) =
(− 1

2 , 1,−
1
4 ); and the alert-zone matrix where (α, β, δ) =

(−2, 1,− 1
4 ). For the ads case, the geofence messenger wants

to deliver an ads to users inside the geofence. The alert-zone
case involves a messenger who wants to deliver an important
message, e.g., a safety warning. While these values were set
based on our own reasoning to mimic these scenarios, we
assume the payoff matrix is given or can be learned.

D. Experimental Results

1) Varying Poisson λ: Focusing on the sporadic setting,
we first evaluate the methods for different λ values. Figure 4
shows the realized values V when λ varies and other param-
eters are fixed, for both ads and alert-zone payoff matrices.
Roughly speaking, each data point in a result graph shows the
average dollar amount per trajectory that one model achieved
over all geofences.

The general observation is that GP-based algorithms greatly
outperform PW, especially with smaller λ, i.e., more sporadic.
This confirms our hypothesis that for sporadic measurements,
using principled decision theory with a proper location pre-
diction method brings significant improvement.
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Fig. 4: The realized value with different values of λ

The improvement is even more prominent in the case of
the alert-zone payoff matrix in Figure 4b, where the penalty
is higher if the messenger waits until the user is inside the
dangerous area (i.e., larger |α|). The reason is that we tend
to act more readily when α is larger, while PW does not. We
can gain more insight into this improvement by investigating
our decision making process further. We decide to act when
E
[
V (t) | act

]
> E

[
V (t) | wait

]
. After expanding and re-

arranging with the fact that typically δ + α− β < 0:

pR(t) >
δ

δ + α− β
(10)

When |α| increases with fixed δ and β, the value of the right
hand side of Equation 10 becomes smaller, which means that
we might act with a smaller probability pR(t). Therefore, an



ads act needs a larger pR(t) than an alert-zone to act, because
missing an alert-zone act is is more costly.

When location measurements are frequent (i.e., larger λ),
prediction does not offer much benefit. This is understandable
because with frequent measurements, there is a much higher
chance a measurement arrives when the user is inside the
geofence. Therefore, the prediction might be unnecessary.

The adaption with a linear mean function offers a higher re-
alized value in the alert-zone setting compared to the standard
GP. This improvement is also shown in other experiments.

2) Varying Prediction Threshold ϵ: Next, we consider the
effect of the maximum prediction threshold ϵ. Recall that t∗ =
− ln(ϵ)/λ. For a fixed λ, a smaller ϵ leads to a larger t∗. In
our most sporadic setting, where λ = 1

4 , and most conservative
threshold, ϵ = 0.1, we need to make predictions up to 600s
ahead. That explains why 600s is used in our expansion of
the geofence grid discussed in Section V-C.

Figure 5 shows the realized values for different values of ϵ
when λ is fixed at 1

2 . The general trend is that smaller values of
ϵ give larger realized values. With larger ϵ, the realized value
becomes smaller and closer to the value obtained by the PW,
which does not make predictions, thus, is not affected by the
change of ϵ. In general, using a smaller ϵ is more conservative,
because it leads to longer prediction times, lessening the
chance that we will terminate the location prediction before
the next measurement arrives.
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Fig. 5: The realized values when varying ϵ

t∗ (s) 194 277 600 3600 36,000
Time (s) 0.38 0.53 1.08 6.12 60.52

TABLE II: Time to calculate pR(t) for all 0 < t < t∗

Another important effect of ϵ is that the suspension of the
prediction greatly reduces computation time. For all 0 < t <
t∗, we need to compute the integrals on the predicted location
distributions to compute pR(t) as in Equation 1. Table II
shows the time to compute pR(t) for all 0 < t < t∗, for
different values of t∗ with λ = 1

2 , for a single geofence, and
running with a single thread on a personal computer. While
all these values of t∗ result in similar realized values, with
ϵ = 0.1 and 0.2, we can suspend the prediction at t∗ = 194s
and 277s, and the computation time is just 0.38s and 0.53s,
respectively. Any computation after these values of t∗ can
be considered as wasted computation. Without this principled

approach to identify t∗, one could arbitrarily choose some
values for t∗, which would result in an almost linear increase
in the computation time.

VI. CONCLUSIONS AND FUTURE WORK

This paper proposes a novel framework for the problem
of using geofences with sparsely sampled, sporadic data,
which may increase the chances of missing a geofence. The
framework uses short-term probabilistic location prediction
and decision theory to decide when to activate a geofence.
Our framework also uses a Poisson distribution to model
arrival time of location measurements as an approach to
stop the prediction process. While our algorithm consistently
outperforms the baseline over a variety of settings, there
are still opportunities for further work in this area. Example
directions include investigating moving geofences; or better
method to decide when to trigger, such as such as when entry
into a geofence reaches a certain confidence level.
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